

Pipes, Fittings \& Valves

Imperial and Metric Systems

Durapipe PVC-U

including Guardian dual contained pipework

Technical Data

Durapipe®

INDUSTRIAL FLUID HANDLING

Durapipe PVC-U - for process chemicals and industrial fluid handling.

Our PVC-U pipe and fittings provide excellent chemical

 resistance making it ideal for various industrial applications.PVC-U allows the safe transportation of many acids, alkalis and chemical concentrates without fear of corrosion and environmental pollution.

Durapipe PVC-U is a solvent welded, fully matched pipework system incorporating pipe, fittings and valves that is available in both imperial and metric sizes.

PVC-U is lightweight and is extremely easy to install which can save both time and money on any given project when compared to other, more traditional pipework materials.

Furthermore, Durapipe PVC-U is fully WRAS approved and it also meets the requirements of other internationally recognised standards and approvals.

Durapipe UK PVC-U pipe is listed in the 'List of Approved Products' published by the DWI.

Key Product Information

- Size Range: $1 / 2^{\prime \prime}$ to 12 " (Imperial), 16 mm to 315 mm (Metric)
- Pressure Rating: (Metric)

Pipe - 20mm to 225 mm PN16,
160 mm to 315 mm PN10
Fittings - 12 mm to 225 mm PN16, 250 mm to 315 mm PN10

- Temperature Rating: 0° to $60^{\circ} \mathrm{C}$
- Pressure Rating: (Imperial) 1/2" to 6" pipe Class E up to 12 " pipe Class C $1 / 2^{\prime \prime}$ to 6 " fittings Class E $8^{\prime \prime}$ to 12 " fittings Class C

Key Product Features

- Lightweight
- Easy to install
- Corrosion resistant

Typical Applications

- Acids and alkalis
- Effluents
- Potable water
- Chemical processing
- Effluent treatment

Index

page
4-7
INTRODUCTION
TECHNICAL INFORMATION8
Maximum pressure/temperature relationship 8
Flow calculations 8
Fittings 9
Flow nomogram 10
Pipe routing 11
Calculating expansion and contraction 11
Additional Important Information 15
Durapipe PVC-U J ointing Guide 16-19
Branch connections - Reduced bore 17
Drying times 18
HCR-36 Chemically Resistant PVC-U Cement/J ointing Guide 8-19
The use of bushes and reducers 20
Threaded connections 20-21
Tightening torques for flange bolts in PVC-U piping systems 21
Comparison of PVC-U Imperial and Metric Sized Pipe 22
General Information 23
Approvals and Quality Marks 24
Product Specification (Imperial) 26
Product Specification (Metric) 27
IMPERIAL FITTINGS 28-55
Optima pipe 30
PVC-U Pipe 31
PVC-U Clear pipe 31
Sockets plain 32
Reducing bushes plain 32
Elbows 45° plain 32
Elbows 90° plain 33
Tees 90° equal plain 33
Bends $22^{1} 2^{\circ}$ Iong radius 34
Bends 45° long radius plain 34
Bends 90° long radius plain 34
Bends 90° short radius plain 34
End caps plain 35
Socket unions plain. 35
Imperial/metric socket adaptors 35
Sockets plain/BSP threaded. 36
Elbows 90° plain/BSP threaded 36
Tee plain/threaded branch 36
Reducing bushes plain/BSP threaded 37
Male threaded adaptors plain/male BSP threaded 37
Female threaded adaptors plain/female BSP threaded 37
Barrel nipples plain/BSP threaded 38
Threaded barrel nipples plain/BSP threaded 38
Hose adaptors male/BSP threaded - short/long pattern 38
Hose adaptors female BSP threaded 39
Tank connectors plain/BSP threaded 39
Composite unions plain/BSP threaded male brass 39
Composite unions plain/BSP threaded female brass 39
Socket unions plain/BSP threaded 40
Sockets BSP threaded 40
Reducing bushes BSP threaded 40
Reducers BSP threaded, reduced spigot/socket 40-41
Elbows 45° BSP threaded 41
Elbows 90° BSP threaded 41
Tees 90° equal BSP threaded 42
End caps BSP threaded 42
Plugs BSP threaded 42
Hexagon nipples BSP threaded 42
Back nuts BSP threaded 43
Socket unions BSP threaded/EPDM seals 43
Flanges stub serrated 43
Flanges full face plain/drilled 44
Flanges blanking plain/drilled 45
Backing rings galvanised mild steel drilled. 5-46
Backing rings pre-drilled 47
Gaskets flat stub flange EPDM 47
Gaskets full face drilled EPDM 48
Valve support plates galvanised mild steel drilled 48
Flange assemblies 49

Valves

VKD Double union ball valves 50
TKD 3-way valves 50
VXE Double union ball valves 51
SXE Easyfit ball check valves 51
SXA Easyfit air release valves 51
RV Y-Type strainers.
VM Diaphragm valves 52
FK Butterfly valves 52
VKR metering ball valves
page
53 53Set of transparent service plugs and white PVC tag holders
Die cut labels plus software
Accessories
One-step solvent cement.54
Eco-cleaner 54
HCR-36 Chemically resistant PVC cement 54
Cleaner for use with HCR-36 Chemically resistant PVC cement54
Cobra pipe clips. 54
Saddle clips 55
Chamfering and de-burring tools 55
Pipe cutters 55
METRIC FITTINGS 56-78
Optima pipe 58
PVC-U Pipe. 58
Sockets plain 59
Reducing bushes plain 59
Reducing sockets plain 60
Elbows 45° plain 60
Elbows 90° plain 61
Tees 45° plain61
Tees 90° equal 61
Tees 90° reducing plain 62
Cross. 62
Bends 90°62
End Caps plain 62
Socket unions 63
Imperial/metric socket adaptors 63
Sockets. 64
Reducers. 4-65
Elbows 90° 65
Tees 90° 66
Male threaded adaptors BSP male thread 66
Female threaded adaptors BSP female thread reinforced 67
Hose adaptors BSP male thread67
Hose adaptors BSP female thread. 67
Hose adaptors spigot end 67
Saddle clamps 68
Tank connectors 68
Male composite unions 69
Female composite unions 69
Flanges stub serrated69
Flanges full face. 70
Flanges blanking 70
Backing rings 70-71
Gaskets flat stub flange 72
Valve support plates. 72
Flange assemblies. 73
Valves
VKD Double union ball valves 74
TKD 3-way valves. 74

Specialist pipework system for process chemicals and industrial fluid handling

- Fully integrated range of pipe, fittings and valves (manual and actuated)
- Available in both metric and imperial systems
- Unrivalled level of third party approvals
- Easy to Install
- Corrosion resistant
- Reduced installation costs
- 50 year design life for pipe and fittings (25 year design life for valves)

What is PVC-U?
PVC-U (Polyvinyl chloride unplasticised) is a highly reliable resin with high performance properties in terms of thermal stability, chemical resistance and mechanical operation which is obtained by the presence of chlorine in the molecular structure.

The different formulations obtained by the addition of suitable additives and stabilisers, make PVC one of the most versatile plastic materials, providing several opportunities to use PVC in different industrial applications.

PVC overcomes many problems that can be associated with other pipework materials when conveying corrosive chemical fluids or the distribution or treatment of general water.

Durapipe PVC-U has been used for the conveyance of water, effluents, acids and chemical concentrates within different industrial applications for many years.

Where is typically PVC-U used?

- Water and Waste Treatment
- Chemical Processing
- Process Engineering
- Food and Beverage Manufacturing
- Marine
- Power Generation

What is PVC-U typically used for?

- Effluent Treatment
- Acids and Alkalis
- Chemical Dosing
- Brine
- Sterilants
- Flocculants

Water Treatment

Wessex Water, Dorset Waste Treatment
 "The team at Durapipe provided excellent service from the initial enquiry, continuing throughout the installation process."
 Mike Back, Damar Group

Thames Water, Hampshire Effluent Treatment
"Durapipe PVC-U was the most appropriate solution due to its lightweight material and maintenance free qualities."
Darren Brighton,
Tuke \& Bell

South West Water Water Treatment
"We wanted to standardise our pipework specification to a single manufacturer which has all the required compliances and approvals to support our industry." Graham Cookson, South West Water

Wedge Group

Contaminated Water
"Durapipe PVC-U was the obvious choice to carry our contaminated water, the product is reliable and hard-wearing."
Andrew MacLean, Newport Galvanisers

Autoglym Car Care

 Chemical Process"Given the exacting requirements of this project, Durapipe PVC-U pipe,
fittings and valves were installed for all pipework requirements, to ensure consistency throughout the factory."
Tim Sellicks, Brimair Engineering

BB Battery Plant, China
 Lead Oxide Slurry Distribution

"We needed to ensure the pipework system could cater for the substances that would be passing through it and the technical advice and support offered by Durapipe UK during the specification stage of the project was exceptional."
Mike Dunn, Chloride
Technical \& Trading

Hi-Tech Coatings
Water based coatings for print
"We chose Durapipe PVC-U due to its high chemical resistance properties. Additionally Durapipe actuated valves allow us to control the
flow remotely, making the operating process smoother and more efficient." Martin Skillen, Director, Hi-Tech Coatings

Why use PVC-U?

Chemical Resistance

PVC-U has excellent chemical resistance properties which allows the safe transportation of a range of industrial fluids and aggressive chemicals without fear of corrosion and environmental pollution. For a full details of the chemical resistance of Durapipe PVC-U please refer to the Durapipe website (www.durapipe.co.uk/ Technical/Chemical-resistance) or contact our Technical Support Team on 01543272445.

Corrosion and Limescale Resistant

PVC-U is extremely corrosion resistant even when conveying chemical concentrates, acids and alkalis or contaminated water. Furthermore, the smooth-bore lining of PVC-U pipework prohibits any limescale build-up, which not only helps to maintain a consistent flow rate, but can also mean less maintenance costs during the lifetime of the system.

Reduced Installation Costs
PVC-U is a solvent-weld jointed pipework system, which when coupled with the many other factors that make plastic pipework easier to install than traditional materials, mean that PVC-U can deliver reduced installation costs when compared to alternative pipework materials.

Lightweight

PVC-U is approximately one-sixth of the weight of steel pipework. Therefore, Durapipe PVC-U is much easier to handle, especially during installation on-site.

 Cost-effective Pipework

PVC-U pipe and fittings are extremely cost-effective, both in terms of material cost and even further when considering installed costs. A PVC-U system can offer economic benefits over many years due to its high performance qualities as well as low maintenance properties especially when compared to alternative materials. No expensive tooling, equipment or hot works are required for installation which makes the system extremely cost-effective.

queuuoanue pue Kinlqeurełsns
The energy used to make Durapipe PVC-U from raw material compares favourably with, for example steel pipe manufacture because lower conversion temperatures are needed. Furthermore, our processes are clean with low process emissions.

Durapipe PVC-U pipe and fittings are cheaper and easier to transport because they are lighter in weight than the equivalent metal pipes. They can be recycled at the end of life into other products, and scrap during the manufacturing process can also be recycled and reused. This minimises the need for any thermoplastic pipe scrap entering the waste stream.

Why use Durapipe FIP PVC-U?

Valves and Flow Control

A comprehensive range of valves is available to support the Durapipe FIP PVC-U system. These include ball, butterfly, diaphragm, non-return, metering ball valve, solenoid and air release valve types which can all be either pneumatically or electrically actuated.
Similarly, we also offer a wide selection of flow control products such as flowmeters and sophisticated measuring devices which can be easily incorporated into a matched Durapipe FIP PVC-U pipeline.
Our in-house Valve department, dedicated to our valves and flow control products, provides expert advice about product selection and system design.
Various tools including valve code builders can be found on the Durapipe UK website, or alternatively contact our Valve and Flow Control department.

Unrivalled Third Party Standards and Approvals

Durapipe FIP PVC can boast the highest levels of international standards and approvals in the industry.
The system is both fully WRAS approved and is also listed in the 'List of Approved Products' published by the DWI.
This unrivalled level of third party approval offers total assurance to the designer, installer and end user that Durapipe PVC-U is a consistent and reliable pipework system.
Furthermore, Durapipe FIP PVC-U is manufactured to the highest level of quality and meets with the requirements of many international standards and approvals.
Durapipe FIP PVC-U has a 50 year design life on pipe \& fittings (25 years on valves) with a residual safety factor of 2:1.

RINA

Approved for use within public water supplies and by the Secretary of State. Durapipe PVC-U is listed in the "List of Approved Products" published by the DWI.

Technical Support

We offer an unrivalled level of technical support where our experienced team can provide product training and installation advice on any given project. We will also provide material take-off advice if architects' drawings are supplied.

Quality Manufacturing

Quality is central to the operation with BS EN ISO9001 certification and within an environmental management system which operates in accordance with the requirements of ISO14001.

Global Distribution Network
Durapipe FIP PVC-U is available from an extensive international network of distributors and stockists.
Please contact us for details of your nearest outlet.

Company Chemist

Our internal company chemist is at your disposal. If you have concerns regarding the chemical combination that a pipework system needs to convey, we can evaluate suitability of the chemical you wish to convey and advise on the best material to use for the system.

Abrasion Resistance

Durapipe FIP PVC-U offers good resistance to abrasion and erosion from aggressive slurries.

No Metallic Stabilisers

Durapipe FIP PVC-U does not contain any harmful metallic stabilisers, and is widely used to convey high purity deionised water in semi-conductor and pharmaceutical applications.

Non-Toxic

Materials used are selected for their toxicological properties, and suitability for conveying cold potable water.

Technical Information

Maximum pressure/temperature relationship

1. Graph is based on an ambient temperature of $20^{\circ} \mathrm{C}$.
2. For higher ambient temperatures decrease the working pressure by 5% for every $10^{\circ} \mathrm{C}$ above $20^{\circ} \mathrm{C}$ ambient.
3. Durapipe PVC-U systems should not be used at temperatures in excess of $+60^{\circ} \mathrm{C}$ or below $0^{\circ} \mathrm{C}$.

Flow calculations

Pressure drop due to friction can be determined for practical purposes using the flow nomogram on the page 10 .
The pressure drop at a given flow rate can be determined as follows:

1. Obtain the internal diameter of the pipe to be used by referring to the dimension table right:
2. Mark this diameter on Scale A.
3. Mark the required flow rate in litres per second on Scale B.
4. Draw a straight line connecting the points on Scales A and B and extend this to Scales C and D.
5. The velocity of flow in metres per second is determined from the intersection with Scale C.
6. The frictional head loss in metres per 100 metres of pipe can then be read off Scale D.

Table of Pipe Internal Diameters

Size	Class C	Class D	Class E	Class 7
$1 / 2{ }^{\prime \prime}$	-	-	17.6	13.4
3/4"	-	-	22.3	18.3
$1{ }^{\prime \prime}$	-	-	28.6	24
$11^{\prime \prime}{ }^{\prime \prime}$	-	37.2	36.2	31.8
11/2"	-	42.7	41.5	37.3
$2{ }^{\prime \prime}$	54.7	53.5	51.9	48.5
$21_{12}{ }^{\prime \prime}$	-	-	-	-
$3{ }^{\prime \prime}$	81.3	78.9	76.5	-
$4 "$	104.5	101.3	98.5	-
5"	-	125.4	-	-
$6{ }^{\prime \prime}$	154.1	149.3	144.9	-
8"	203.2	198.2	-	-
10"	253.2	-	-	-
12"	300.2	-	-	-

Note: Dimensions are given for guidance only.

Size	PN10		Size	PN16
20	-		20	17.0
25	-		25	21.2
32	28.8		32	27.2
40	36.2		40	34.0
50	45.2		50	42.6
63	57.0		63	53.6
75	67.8		75	63.8
90	81.4		90	76.6
110	101.6		110	96.8
125	115.4		125	-
$140 *$	125.4		-	-
160	147.6		-	-
200	184.6		200	-
250	230.8		225	-
315	290.8		315	-

*= PN12 pipe

Fittings

The calculation of pressure drop in fittings is more complex but calculations can be made for equivalent lengths of straight pipe using the Formula $\mathrm{E}=\mathrm{F} \times \mathrm{D}$ where:
$\mathrm{E}=$ the equivalent pipe length (metres)
F = the fittings constant (see table)
D = the fitting internal diameter in mm.
To calculate the total pressure drop in the system, the equivalent straight pipe lengths for fittings is then added to the total straight pipe length to obtain the total drop.

Fittings constant

90° Elbow	0.03
45° Elbow	0.01
90° Tee - straight through	0.01
90° Tee - side branch	0.06
90° Bend	0.01
45° Bend	0.01
Reducing Bush (per size reduction)	0.015
Butterfly Valves	0.13
Diaphragm Valves	0.23
Check Valves	0.05

These values are included as a guide to facilitate calculation of overall system performance and should not be used in isolation.

Flow nomogram

Pipe routing

Systems installed above ground should be designed such that there are sufficient changes in direction to accommodate expansion or contraction. The support method described earlier will ensure that the pipework can move axially, without snaking. Utilise all available pipe flexibility. Do not place clips too close to changes in direction.

Calculating expansion and contraction

Temperature variations in a pipework system will increase or decrease the length of each pipe. This is the result of temperature changes in the fluid carried and also from ambient temperature variations.
The rate of expansion or contraction of pipework is dependent on its length, its coefficient of expansion and the temperature difference. Increase/ decrease in pipe length is given by the formula:

$$
\text { Expansion }=\mathrm{L} x \propto x \Delta T
$$

where:

$$
\begin{aligned}
& \mathrm{L}=\text { length of pipe (mm) } \\
& \propto=\text { coefficient of linear expansion } \\
& \Delta T=\text { temperature difference of the pipe }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

The coefficient of linear expansion for PVC-U $=6 \times 10^{-5} /{ }^{\circ} \mathrm{C}$ Rule of thumb: PVC-U expands/contracts $0.6 \mathrm{~mm} / \mathrm{m}$ per $10^{\circ} \mathrm{C}$ temperature change:

Example:

What is the expansion/contraction of an insulated, 30 m long, PVC-U Condenser water main, installed at $15^{\circ} \mathrm{C}$, operating at a maximum temperature of $35^{\circ} \mathrm{C}$ and a minimum temperature of $5^{\circ} \mathrm{C}$?
Expansion:

L	$=30,000 \mathrm{~mm}$
\propto	$=7 \times 10-5$
$\Delta \mathrm{~T}$	$=35-15=20^{\circ} \mathrm{C}$

Expansion $=30,000 \times 7 \times 10^{-5} \times 20^{\circ} \mathrm{C}$

$$
=42 \mathrm{~mm}
$$

Contraction:
$\mathrm{L}=30,000 \mathrm{~mm}$
$\propto \quad=7 \times 10.5$
$\Delta \mathrm{T}=15-5=10^{\circ} \mathrm{C}$
Contraction $=30,000 \mathrm{~mm} \times 7 \times 10^{-5} \times 10^{\circ} \mathrm{C}$

$$
=21 \mathrm{~mm}
$$

Hence the system must be designed, using expansion loops, the natural flexibility of pipe, or expansion bellows, to cater for a total differential movement of 63 mm with an expansion of 42 mm and a contraction of 21 mm . When sizing expansion loops or free bending leg lengths at changes at direction, the greatest amount of movement should be used (expansion and / or contraction).

Catering for pipe movement

Systems installed above ground should be designed to ensure that there are sufficient changes in direction to accommodate expansion and contraction. The support method described later will ensure that the pipework can move axially without snaking. If sufficient changes in direction are not available within the design of the system, alternative methods of catering for pipe movement can be considered such as expansion loops or flexible rubber bellows.

Expansion loops

The length of unrestrained pipe (free leg length) required to accommodate expansion can be calculated from the graph overleaf.

Example:
Calculate the size of expansion loop required for a 90 mm diameter pipe expanding 42 mm and contracting 21 mm :
Based on the worst case ie. 42 mm expansion, $\frac{\Delta \mathrm{L}}{2}=21 \mathrm{~mm}$

Draw a horizontal line from the vertical section to meet the 90 mm pipe gradient line.
Drop a perpendicular from the intersection point to the horizontal scale. The figure obtained is the free leg length of the loop required.
Hence, in this instance a loop measuring 1200 mm long $\times 600 \mathrm{~mm}$ wide will cater for $\pm 21 \mathrm{~mm}$ movement i.e. the loop will cater for both the expansion and contraction of the pipe.

Expansion bellows

Axial expansion bellows may also be used in place of utilising the natural flexibility of the PVC-U. These must be of a suitable design to ensure correct operation with PVC-U pipework. Contact our Technical Support Department for further information.

Typical bellows arrangement

Anchor points

The direction of pipe movement can be controlled by the use of anchor points at strategic positions. There are a number of methods of securely anchoring plastic pipes, some of which are detailed below. However it should be noted that tight fitting pipe supports or U bolts should not be used since damage to the pipe could occur.

Construction of typical anchor points

1. Small Bore (up to 4" Pipework)

2. Larger pipe (above 4" Pipework)

Pipe supports and clips

Pipe supports and clips should provide lateral restraint and allow free, unrestricted, axial pipe movement. Standard 'drop rods' may not provide sufficient lateral restraint and the PVC-U pipe could start to 'snake'.
Durapipe Cobra clips are designed to meet these requirements. A suitable alternative would be mild steel saddle clips designed with a clearance between the pipe and the clip. All steel brackets in contact with the plastic pipe should be free of sharp edges to avoid damaging the pipe.

Support centres

The recommended distance between supports for pipes filled with water is given in the table below. Where the contents have a specific gravity greater than 1 the distance must be decreased by dividing the recommended centre distance by the specific gravity. For vertical pipes, support centres may be increased by 50%.

Support distances

mm	Inch	20ㅇ	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	50ㅇ
20	1/2	0.90	0.85	0.85	0.80
25	$3 / 4$	1.00	0.95	0.90	0.90
32	1	1.10	1.05	1.00	1.00
40	$11 / 4$	1.30	1.25	1.20	1.15
50	$11 / 2$	1.50	1.45	1.40	1.35
63	2	1.60	1.55	1.50	1.45
75	$2^{1 / 2}$	1.80	1.75	1.70	1.60
90	3	2.10	2.05	1.95	1.90
110	4	2.40	2.30	2.25	2.10
125		2.50	2.40	2.35	2.20
140	5	2.70	2.60	2.55	2.40
160	6	2.90	2.80	2.70	2.60
200		3.20	3.10	3.00	2.90
225	8	3.45	3.30	3.25	3.10
250		3.60	3.45	3.40	3.25
280	10	3.80	3.65	3.55	3.40
315	12	4.10	3.95	3.85	3.70

Support of heavy equipment

Large valves, strainers and other heavy equipment should always be independently supported to prevent undue loading onto the PVC-U system. Durapipe valve support plates have been designed for this purpose and may be used in place of flange backing rings.

Anchor blocks

For wholly solvent welded systems the pipework is pressure balanced and anchor thrust blocks are not required. When rubber ring joints are used it is necessary to provide concrete anchor blocks of changes in direction such as elbows, bends, tees etc. This is necessary to withstand the forces generated by system pressurisation.
For greater detail, users in the U.K. are recommended to study the Code of Practice CP 312 published by the Pipe and Fittings Group of the British Standards Institute covering installations above and below ground.

Buried pipes

Recommendations covering essential requirements for installations below ground may be summarised as follows:
In general, trenches should not be less than a metre deep.
Trenches should be straight sided, approximately 300 mm wider than the pipe diameter to allow proper consolidation of packing materials. Trench bottoms should be as level as is practical. Large pieces of rock, debris and sharp objects should be removed. Alternatively gravel can be laid approximately 100 mm deep on the floor of the trench. (Sand may be used but subterranean water is liable to wash sand away and leave the pipe unsupported.)
If pipes are jointed above ground, they should remain undisturbed for 2 hours before being lowered into the trench.

After laying, pipes should be covered with gravel or similar material to a depth of 100 mm above the crown of the pipe. The gravel should be extended sideways to both trench walls and compacted. This should be done prior to testing, with joints left exposed.
Care should be taken to ensure that sharp objects, stones, etc, are prevented from falling into the trench before covering the pipe.
After pressure testing, joints should be covered with gravel or similar material, and back filling completed.
A section of pipe installed below ground to the above recommendations is shown in the illustration.

Additional Important Information

Thermal Insulation

Some insulation products can contain substances capable of having a detrimental effect on thermoplastic pipework.
Recommended insulation - A list of some of the common types of insulation materials known to be suitable with PVC-U pipework are as follows;
Fibre wool, such as 'Rockwool'
Armaflex Class 1 HT
Phenolic foam
Polystyrene
Note: the above list is not exclusive - please contact our Technical Support Department on 01543272446 if further assistance is required.

Certain foam rubbers and adhesives used in conjunction with foam rubber insulation may be detrimental. We do not, therefore, recommend that insulation be bonded to the pipework. Adhesives should only be used to bond adjacent edges together.

Trace heating

Thermoplastic pipework can be damaged by plasticisers used in the outer coverings on some heating tapes. Tapes sheathed in plasticised PVC must be avoided, unless specifically approved by us. (This comment also applies to any tapes, adhesives, or other substances used to secure the heating tape to the pipework.) Recommended heating tapes - The selection of heating tapes with silicone rubber, woven wire, or woven polyester outer sheaths will eliminate the risk of plasticiser migration. These tapes are therefore preferred for use on thermoplastic systems.

Pipe contents identification

Do not put self-adhesive labels directly on to pipe surfaces as this may cause stress cracking. It is recommended that some sort of barrier, such as aluminium foil, is placed between pipe and identification label.

Intumescent mastic and mastic sealants

Certain mastic sealants are formulated with phthalates. Phthalates are known to be extremely aggressive toward PVC-U materials, and therefore confirmation of the suitability of any mastic sealant should be determined before being used in conjunction with PVC-U pipework.

Pipe clips

It is important that the composition of pipe clips and their linings do not include substances which might have a detrimental effect upon the PVC-U pipe. Please check for suitability before use. We recommend the use of Durapipe Cobra clips for pipe sizes up to and including 160 mm OD / 6 " NB, wherever circumstances allow.

Freezing conditions

Precautions should be taken to prevent contents freezing, as this can cause pipework to split.

Contact with fluxes

Some fluxes can be detrimental to PVC-U. Care should be taken when soldering copper pipework directly above, or close to, PVC-U pipework.

Buried pipes

Do not lay PVC-U in contaminated ground eg. 'brown-field' sites. Do not lay PVC-U in ground where spillages of chemicals may occur.

Thread sealants

Some thread sealants can damage PVC-U. PTFE tape should be used when making threaded connections. See page 20 for further information.

Resistance to UV (sunlight)

Care should be taken to avoid exposure to UV light, eg. sunlight, particularly during storage. This will cause discoloration and deterioration of the PVC-U material. Whilst this is a surface effect only, it is recommended that precautions be taken to prevent this happening. If stored outdoors pipe should be covered with opaque sheeting. If installed outdoors it can be protected from the effects of UV by insulating or painting.

Pressure surges

Durapipe PVC-U pipework can withstand pressure surges within the limitations detailed within CP312 Part 2:1973 and its amendment dated 1977. On no account should pressure surges be allowed to exceed the maximum continuous working pressure calculated using the graph on page 8.

Nominal pressure

Maximum allowed working pressure for continuous use at $20^{\circ} \mathrm{C}$ in conveying water must be less than or equal to the nominal pressure. If not otherwise stated, nominal pressure of Durapipe FIP fittings is as follow:
Solvent Welded Fittings:
From d16 up to d225 PN16.
From d250 up to d315 PN10.
Adaptor Fittings: From d16 up to d110 PN16.
Threaded Fittings: From 3/8" up to 4" PN16.

WARNING

DO NOT use PVC-U pipework to convey compressed air or gases. Do not test with compressed air or gases. This can result in explosive failure and may cause severe injury.

Durapipe PVC-U Jointing Guide

The cold solvent welding using 'Solvent Cement' is the standard procedure for jointing PVC-U pipes and fittings. The solvent cement operation is carried out by using solvent made from PVC-U polymer together with a mix of solvents. This mix of solvents softens the walls of the pipes and fittings and carries out the welding, resulting in a homogeneous welded joint.
Durapipe PVC-U pipes and fittings are designed for an interference fit. Although Durapipe PVC-U solvent cement has good gap filling properties no attempt should be made to increase the clearance between the pipes and fittings.
Solvent cement welding offers a simple and quick means of constructing high integrity, leak-free joints.
The solvent cement operates by chemically softening the joint surfaces. J oint integrity will be greatly reduced if these surfaces are not clean and properly prepared.
Durapipe PVC-U solvent cement must be used.
The jointing procedure detailed below must be followed.
This relates to the new "one-step" solvent cement. With this cement it is not necessary to abrade pipe or fitting.

Procedure

1. The pipe must be cut clean and square. A suitable wheel cutter will eliminate swarf. As an alternative (and on larger sizes) a carpenters saw should be used, however this may create dust and swarf which can enter the system.

2. Chamfer the end of the pipe using a coarse file or suitable chamfering tool. The chamfer should be approximately 45° by 3 mm to 5 mm depending on the pipe size.

Recommended Chamfer Distances	
Pipe size	Chamfer
12" - 20 mm	3 mm
$3 / 4{ }^{\prime \prime}-25 \mathrm{~mm}$	3 mm
1"-32mm	3 mm
11/4"-40mm	3 mm
$11 / 2$ " -50 mm	3 mm
2'-63mm	5 mm
2½" 75 mm	5 mm
3"-90mm	5 mm
4" - 110mm	5 mm
5" - 140mm	5 mm
6" - 160mm	5 mm
8" - 225mm	5 mm
10" - 250 mm	5 mm
12" - 315 mm	5 mm

This operation is very important as non-chamfering can cause the solvent cement to be scraped away from the internal surface of the fitting, causing a poor joint.

Remove any dirt, grease or moisture. A thorough wipe with a clean, dry rag is usually sufficient. Check dry fit. Pipe should insert easily into socket, approximately $1 / 4$ to $3 / 4$ of the total socket depth.
3. Mark the pipe a known distance from the end and clear of the area to be cleaned. This mark should be used to confirm full insertion of pipe into socket of fitting.

4. Ensure joint surfaces are clean and free from moisture.

Clean surfaces thoroughly with Durapipe Eco-cleaner using lint free cloth/paper towel.

5. Using a clean brush, apply cement to the pipe and fitting. The joint surfaces should be completely covered by cement. Cement should be applied using an appropriate size brush. It is important to apply cement quickly to enable assembly without excessive force being required. When applying cement with brush, the size of the brush should be approximately half the size of the pipe to be jointed - brush size up to $2^{1 / 22^{\prime \prime}}(63 \mathrm{~mm})$ for 0.5 litre and up to 3 " $(75 \mathrm{~mm})$ for 1 litre tins.
Generally, it is best practice to apply more cement to the pipe than the fitting, as excess cement on the fitting can result to cement pooling and potential softening of the material.

Note: Before commencing the solvent weld procedure, please check the expiry date of the solvent cement being used. Cement should be used within 24 months from the date on the base of the tin.
6. Immediately after applications of cement, push pipe fully home into the fitting, as far as the internal stop, without rotation. After this operation, the fitting may be rotated if necessary for alignment (max. $1_{/ 4}$ turn). Hold the pipe and the fitting for times varying from a few seconds on sizes ${ }^{1 / 2 "}$ or 20 mm up to 1 minute on sizes 8 " or 225 mm and above. The slight taper moulded into the fitting may otherwise cause it to slide off the pipe with consequent loss of joint strength. Application of the correct amount of cement will result in a neat bead of cement at the edge of the fitting and at the edge of the pipe. Excessive deposits inside the fittings must be avoided as these can weaken the wall, particularly on smaller sizes. When working under cold conditions make sure the joints are free from frost and moisture.

7. Wipe off excess cement from the outside of the joint.

8. Using the mark previously made, check that the pipe has been fully inserted.

9. Do not disturb the joint for at least 15 minutes after assembly. Allow sufficient drying time prior to pressurisation of the system (see page 18).
10. Replace lids on containers.

CAUTION

- DO NOT use near naked flames
- DO NOT smoke in the working area
- DO NOT use in confined spaces
- DO NOT joint in the rain or wet conditions
- DO NOT use dirty brushes
- DO NOT use dirty or oily cleaning cloths
- DO NOT use the same brushes for different cements
- Follow safety instructions on Durapipe solvent cement and Eco-cleaner containers
- Always wear appropriate personal protective equipment

Notes:

1. The integrity of Durapipe PVC-U systems may be affected if Durapipe PVC-U solvent cement or HCR-36 chemically resistant cement is not used. Durapipe UK disclaims responsibility for any Durapipe PVC-U system constructed with any other cements or not fabricated in accordance with the instructions contained herein.
2. On sizes 6 " or 160 mm and above use $3 "$ wide brushes.
3. To achieve the correct speed of application on sizes 4 " or 110 mm and above, cement should be applied simultaneously to pipe and fitting, by two people.
4. Application of the correct amount of cement will result in a neat ring of cement at both ends of the joint.
5. Where PVC-U pipework is to be used to convey concentrated chemicals please refer to page 18 for details on HCR-36 chemically resistant cement.
6. Durapipe have produced a series of videos demonstrating the correct jointing procedures for the various pipework systems.
Please visit www.durapipe.co.uk/Technical/Video/Index.asp

Branch connections - Reduced bore

Reduced branch connections can be made as follows:
Imperial range:
Bushed equal tees.

Metric range:

Bushed equal tees, reduced branch tees or bolt-on saddles.

Drying times

The drying times will vary with fit, amount of solvent cement applied, ambient temperature and working pressure. It is recommended that, wherever possible, joints of sizes up to 8 "/225mm are allowed to dry for at least 24 hours, and sizes $10 "$ and $12 " / 250 \mathrm{~mm}$ and 315 mm for at least 48 hours. These guidelines are based on an ambient temperature of between $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. Longer drying times will be required at lower ambient temperatures.

It is recognised that there will be occasions when the system will need to be put into service within a few hours of being made. A rough but safe working guide where the ambient temperature is between $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ and the contents temperature does not exceed $20^{\circ} \mathrm{C}$ is as follows:

Size range	Drying time
Up to 4 " $/ \mathrm{Up}$ to 125 mm	1.0 hour/bar
5 " \& " " $140 \mathrm{~mm} \& 160 \mathrm{~mm}$	1.5 hours/bar
$8 " / 200 \mathrm{~mm} \& 225 \mathrm{~mm}$	2.0 hours/bar
$10 \& 12 " / 250 \mathrm{~mm} \& 315 \mathrm{~mm}$	30 hours minimum

Note: Minimum drying period should never be less than 1 hour.
The consumption of solvent cement for carrying out the jointing depends on different elements (ambient conditions, pipe dimensions, viscosity of the cement, workers' experience etc).

An indication of the number of joints likely to be made per litre of Durapipe PVC-U solvent cement is as follows:

mm	Size	
imperial	Joints per 500 ml PVC-U	
$12-32$	$3 / 8^{\prime \prime}-1^{\prime \prime}$	600
$40-63$	$11 / 4^{\prime \prime}-2 "$	240
$75-90$	$3 "$	100
$110-125$	$4 "$	60
$140-160$	$6 "$	30
$200-225$	$8 "$	16
$280-315$	$10 "-12 "$	6

The solvent cement is made with PVC-U resin.

Instructions for use

1. Cut the pipe at right angles to its axis and chamfer it.
2. Clean surfaces to be welded together with HCR chemically resistant cleaner. Check dry fit. Pipe should insert easily into socket, approximately $1 / 4$ " to $3 / 4$ " of the total socket depth.
3. Apply solvent cement quickly in a thin and even coat into the fitting, and a thicker coat on the pipe-end, stroking the cement along and not round the surface.
4. If the solvent cement must fill a gap, a second (after 30 sec .) or even a third layer of the solvent cement can be necessary.
5. Immediately push the joint together and hold for a moment in this position. Remove any surplus cement. Do not charge the joint mechanically for the first 10 minutes. Do not use the solvent cement below temperatures of $5^{\circ} \mathrm{C}$.

HCR-36 Chemically Resistant PVC-U Cement

HCR-36 Solvent Cement and HCR-36 Cleaner, is suitable for solvent weld jointing in applications where high chemical resistance may be required; HCR-36 is not sensitive to oxidation and contains no additives which dissolve in alkaline solutions, HCR-36 can be used as an effective alternative to Durapipe One Step Cement where chemical resistance is key.

Chemical resistance

For PVC-U system with the following chemicals, we would recommend the use of HCR-36 as a standard alternative to Durapipe one step solvent cement.

Sulphuric acid
Nitric acid
Hydrofluoric acid
Sodium hypochlorite
Bases (caustic soda)

Maximum gap 0.3 mm

$20^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
Concentration higher than 70\%
Concentration higher than 20\% Each concentration

Active chlorine higher than 7.5\%
Concentration higher than 35\%
Maximum pressure
12 bar
6 bar
4.5 bar
1.5 bar

Maximum pressure depends also on the pipe system used and PN class.

Consumption: HCR-36 Solvent Cement:
Pipe Diameter (Amount of joints) per 1 Litre Container

Pipe Diameter (OD)	Average J oints per (1L)
$1 / 2 "-20 \mathrm{~mm}$	1300
$1^{\prime \prime}-32 \mathrm{~mm}$	650
$1^{1 / 1} 4^{\prime \prime}-40 \mathrm{~mm}$	290
$1^{1 ⁄ 2}-50 \mathrm{~mm}$	160
$2^{1 ⁄ 2}-75 \mathrm{~mm}$	90
$3^{\prime \prime}-90 \mathrm{~mm}$	70
$4^{\prime \prime}-110 \mathrm{~mm}$	30

Consumption: HCR-36 Chemically Resistant Cleaner:
Pipe Diameter (Amount of joints) per 1 Litre Container

Pipe Diameter (OD)	Average J oints per (1L)
$1 / 2^{\prime \prime}-20 \mathrm{~mm}$	2000
$1^{\prime \prime}-32 \mathrm{~mm}$	800
$1^{1 ⁄ 2} 4^{\prime \prime}-40 \mathrm{~mm}$	700
$1^{1 ⁄ 2}-50 \mathrm{~mm}$	650
$2^{1 ⁄ 2}-75 \mathrm{~mm}$	330
$3^{\prime \prime}-90 \mathrm{~mm}$	240
$4^{\prime \prime}-110 \mathrm{~mm}$	140

Application

HCR-36 solvent cement is suitable for jointing pipes, couplings, fittings in PVC-U pressure and drainage systems up to 110 mm . HR-36 Cleaner should be used over standard Eco-cleaners when using HCR-36 solvent cement to ensure required chemical resistance.

Setting times

We advise when using HCR-36, please allow 48 hours drying time at a consistent temperature (medium temperature $20^{\circ} \mathrm{C}$) and rinse the system with water before use.

Jointing properties

The welded joint is resistant to temperatures up to $80^{\circ} \mathrm{C}$, the solvent cement joint is waterproof, and the chemical resistance against aggressive chemicals such as inorganic acids and bases is high compared with standard PVC-U one step solvent cement.
HCR 36 is not suitable for jointing in temperatures below $5^{\circ} \mathrm{C}$

Shelf life

HCR-36 Solvent Cement has a shelf life of 9 months from the date of manufacture.
HCR-36 Cleaner has a shelf life of 24 months from the date of manufacture.

Recommended Brush Size	
Pipe size	Brush size
$16 \mathrm{~mm}-32 \mathrm{~mm}\left(3 / 8^{\prime \prime}-1^{\prime \prime}\right)$	8 mm Round Brush
$40 \mathrm{~mm}-110 \mathrm{~mm}\left(1^{1 / 4}-4^{\prime \prime}\right)$	$25 \times 3 \mathrm{~mm}$ Flat Brush

Dates of manufacture can be located on the base of the tin.

HCR-36 Chemically Resistance J ointing Guide

1. The pipe must be cut clean and square. A suitable wheel cutter is recommended which will eliminate swarf from entering the system.
2. Chamfer the end of the pipe using a coarse file or chamfering tool, the chamfer on the outside of the pipe should be approximately $45^{\circ} \mathrm{C}$ by 3 mm to 5 mm depending on the pipe size.

This operation is very important as non-chamfering can cause the solvent cement to be scraped away from the internal surface of the fitting, resulting in a poor joint.
3. Clean the mating surface of the pipe and fitting to be jointed with HCR-36 Cleaner (Product Code: 03467 395) to remove any dirt, grease or moisture.
4. Measure the insertion depth of the socket and mark this onto the pipe after adding a known measurement (so insertion depth can be checked after installation).
5. Check the dry fit of the pipe and fitting, the pipe should enter the fitting easily into the socket, approximately $1 / 4$ to $3 / 4$ of its initial depth.
Note: Before applying the HCR-36 Cleaner or HCR-36 Solvent Cement, please check the expiry dates.
6. Apply the solvent cement to the surface of the inner fitting with a thin even coating and apply a thicker coat to the pipe end, stroking the cement along and not around the surface. The cement should be applied using an appropriate sized brush, the size of the brush should be approximately half the size of the pipe that is being joined (Please refer to the brush sizing table).

Excess cement deposits inside the fitting must be wiped away with a clean dry cloth, as this can weaken the wall, particularly on the smaller sizes.
7. If HCR-36 is required to fill a gap, please allow 30 seconds before a second or third coat is due to be applied.
8. Immediately after the application of cement, push the pipe fully into the fitting, as far as the internal stop without rotation, hold the joint still for a few seconds ensuring the pipe is secured into the fitting (Larger sizes may require extra time). After this operation, the fitting may be rotated if necessary. A neat bead of solvent cement should be evident around the pipe and fitting juncture, which will indicate the correct amount of solvent cement has been applied,
9. Replace lids securely on the HCR-36 CR Solvent Cement and HCR-36 CR Cleaner to avoid unnecessary evaporation.
10. Do not disturb the joint for at least 15 minutes after the initial assembly, allow 48 hours drying time at a consistent temperature prior to pressurisation or testing of the system see page 18.

The use of bushes and reducers

Reducing bushes

Reducing bushes offer a neat and simple method of reducing socket size in the minimum of space.
Care must be taken to prepare properly all jointing surfaces as recommended earlier, with the end of the bush being chamfered (unless a moulded chamfer is included).
Ensure that adequate solvent cement is applied to surfaces to be jointed. The shape of the bush can make it difficult to hold when applying cement to the outer surface. A short length of pipe pushed into the bush can be used as a handle, to make this operation easier.
The correct amount of solvent cement will result in a complete ring of cement being formed at both ends of the joint.

The use of reducers

All fittings have female ends, dimensionally controlled for cold fusion jointing. In addition the metric series reducers are provided with controlled outside diameter at the large end. They can therefore be used as male or female components as shown.

Example in the use of reducing bushes.

Threaded connections

Connections - plastics to metal

There are several recommended methods to connect metal and plastic systems:
Composite unions
Flanges
Male threaded fittings
Female threaded fittings
Plastics expand or contract more than metals for any given change in temperature. The practice of connecting plastic threaded fittings to metal threads is not recommended where the joint is likely to experience a temperature change of more than $+/-5^{\circ} \mathrm{C}$, otherwise leaks may occur.
Composite unions are available with brass male or female BSP threaded adaptors.
If it is required to cut a thread on to Durapipe PVC-U pipe, use a sharp die especially reserved for plastic pipes and cut full thread depth without lubricant, in one operation.
This should only be attempted on pipe sizes up to 2 "n.b. Class 7 pipe must be used. Pipes from Durapipe PVC-U metric range are not suitable for threading.
Assembly should be carried out by hand and final tightening by a strap wrench, if necessary.
Extra care must be taken not to overtighten or damage the thread.
Pipe wrenches must not be used.
It is recommended that PTFE tape be used when making threaded joints/connections.
Any other sealing compound must be confirmed by Durapipe UK as being suitable.
'Boss White' and anaerobic adhesive sealants, such as Loctite 542 and 572, can chemically attack PVC-U and must not be used.

Connections for instrumentation

Instrumentation connections can be made by drilling through pipe and socket where the material is at its thickest and tapping the hole to receive a threaded fitting, as shown below:

Pipe size

$16 \mathrm{~mm}-63 \mathrm{~mm} / 3 / 8$ "-2"
$75 \mathrm{~mm}-110 \mathrm{~mm} / 2^{1 / 2}-4$ "
$125 \mathrm{~mm}-140 \mathrm{~mm} / 5^{\prime \prime}$
160 mm \& above/6" \& above

Size of connection

Use tees, reducing bushes and threaded fittings

Max. tapping $1_{2}{ }^{2}$ BSP
Max. tapping 3/4" BSP
Max. tapping 1 BSP

Such connections, if correctly drilled and tapped with a full thread form, will be limited to Class C pressures.

Flanged joints

Full face flanges are available from ${ }^{1} / 2$ "to $4^{\prime \prime}$ and 25 mm to 110 mm . Stub flanges are available from 2" to 12" and in metric sizes from 20 mm to 315 mm .

The correct galvanised mild steel backing ring and rubber gasket must be used with stub flanges (backing rings not required on moulded full face flanges).

Flange bolting procedure

The following procedure is recommended for installing Durapipe PVC-U flanges:

1. Inspect flange faces and ensure that they are clean and undamaged.
2. Check that the correct backing ring and rubber gaskets have been supplied. Durapipe UK supplies a matched system of flanges and backing rings - do not interchange Metric and Imperial components.
3. Loosely assemble flanges. Ensure that flanges and bolt holes align and that the flange faces are parallel. Ensure that the gasket is correctly positioned between the flanges.
4. Ensure that the appropriate sized washer are placed under both bolt heads and nuts.
5. Tighten the nuts and bolts in a diagonally opposite sequence (see right) to ensure even loading around the flange to avoid distortion. It is recommended that the nuts and bolts be tightened as uniformly as possible progressively from a finger tight start.
6. Repeat as necessary until recommended torque value at all bolts is achieved.

Tightening torques for flange bolts in PVC-U piping systems

Recommended Torque

Values (Nm)

Size	Torque
16	15
20	15
25	15
32	15
40	20
50	30
63	35
75	40
90	40
110	40
125	50
140	50
160	60
200	70
225	70
250	80
315	100

The tolerance on torque is $+/-10 \%$

Tightening sequence

Comparison of PVC-U Imperial and Metric Sized Pipe

Tabulated below is a comparison of imperial sized PVC-U pipe to BS3505 and metric sized pipe to EN 1452-2. They are produced to different standards, but can be joined together using flanges or adaptors.

The systems are also designated differently; the imperial system refers to the nominal bore size; the metric system relates to the outside diameter.
Both systems are produced with the outside diameter as the controlled dimension. This enables the same fitting of a particular size to be joined to all classes of pipe in that size.

Please refer to the pipe section in this brochure for pipe sizes available from Durapipe UK.

Threaded systems

Imperial systems Class 7 pipe can be machined to BSP parallel or BSP taper thread forms. Metric pipe is not produced with an outside diameter suitable for threading.

Imperial System (BS EN 1452)							Metric System (EN 1452-2)				
$\begin{gathered} \text { Size } \\ \text { (nominal bore) } \\ \text { (inch) } \end{gathered}$	Minimum mean outside diameter (mm)	Minimum wall thickness (mm)					Sizeoutside diameter(mm)	Min. meanoutside diameter(mm)	Min. wall thickness (mm)		$\begin{gathered} \text { Design } \\ \text { Coefficient } \end{gathered}$
		Class B	Class C	Class D	Class E	Class 7			PN10	PN16	
							16	16.0			$\begin{gathered} 2.5 \\ \text { up to } \\ 90 \mathrm{~mm} \end{gathered}$
1/2	21.2				1.7	3.7	20	20.0		1.5	
3/4	26.6				1.9	3.9	25	25.0		1.9	
1	33.4				2.2	4.5	32	32.0	1.6	2.4	
$1^{1 / 4}$	42.1				2.7	4.8	40	40.0	1.9	3.0	
$1^{1 / 2}$	48.1			2.5	3.1	5.1	50	50.0	2.4	3.7	
2	60.2		2.5	3.1	3.9	5.5	63	63.0	3.0	4.7	
$2^{1 / 2}$	75.2		3.0	3.9	4.8		75	75.0	3.6	5.6	
3	88.7	2.9	3.5	4.6	5.7		90	90.0	4.3	6.7	
4	114.1	3.4	4.5	6.0	7.3		110	110.0	4.2	6.6	
							125	125.0	4.8	7.4	
5	140.0	3.8	5.5	7.3	9.0		140	140.0	5.4	8.3	
6	168.0	4.5	6.6	8.8	10.8		160	160.0	6.2	9.5	2.0
							180	180.0	6.9	10.7	
							200	200.0	7.7	11.9	
8	218.8	5.3	7.8	10.3	12.6		225	225.0	8.6	13.4	
10	272.6	6.6	9.7	12.8	15.7		250	250.0	9.6	14.8	
12	323.4	7.8	11.5	15.2	18.7		315	315.0	12.1	18.7	

Properties guide

Chemical resistance and performance data	Typical applications	Unsuitable for the following uses	Sizes and jointing information
Strong mineral acids Caustic and ammoniacal solutions Some organics Most detergents Temperature range $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$	Chemicals, potable water, general purpose water, waste water etc.	Aromatic solvents temperatures below $0^{\circ} \mathrm{C}$ temperatures over $60^{\circ} \mathrm{C}$	Pipe and fittings for solvent welding manufactured in metric sizes 12 mm to 315 mm to DIN and ISO standards and $3 / 8$ " to 12" British Standards. Threaded fittings also available.

Note: Temperatures given are for guidance only, please check before specifying.

General Information

Handling and storage

The high impact strength of Durapipe PVC-U systems provides some protection against damage but care should be taken at all stages of handling, transportation and storage.
Pipe must be transported by a suitable vehicle and properly loaded and unloaded, eg., wherever possible moved by hand or mechanical lifting equipment. It must not be dragged across the ground.
The storage should be flat, level and free from sharp stones.

Lengths

Pipe lengths stored individually should be stacked in a pyramid not more than one metre high, with the bottom layer fully restrained by wedges. Where possible, the bottom layer of pipes should be laid on timber battens at one-metre centres. On site, pipes may be laid out individually in strings. (Where appropriate, protective barriers should be placed with adequate warning signs and lamps.)

Bundles

Bundled packs of pipe should be stored on clear, level ground with the battens supported from the outside by timbers or concrete blocks. For safety, bundled packs should not be stacked more than three metres high.
Smaller pipes may be nested inside larger pipes. Side bracing should be provided to prevent stack collapse.
Similar precautions should be taken with fittings and these should be kept in protective wrappings until required for use.

Storage of bundles

Health and Safety at Work Act and COSHH Regulations

Attention is drawn to the requirements in the UK of this Act and to the Control of Substances Hazardous to Health (COSHH) Regulations. Durapipe UK cannot accept responsibility for accidents arising from the misuse of its products because of bad installation or incorrect application.

Material safety data

Material Safety Data sheets are available on our website.

Filling and flushing

When purchasing chemicals for either flushing or long-term system use, suppliers should be advised that this is for PVC-U material. Guidance on the suitability of various system flushing or filling fluids with PVC-U can be found in the Durapipe Chemical Resistance brochure, 04900004 for further details.

Testing

It is suggested that the following test procedure be followed, after joints have been allowed to dry for the appropriate minimum time (at least 24 hours up to $8 " / 225 \mathrm{~mm}$, sizes $10 " / 250 \mathrm{~mm}$ and $12^{\prime \prime} / 315 \mathrm{~mm}$ require a minimum of 48 hours at $20^{\circ} \mathrm{C}$).
The system should be divided conveniently into test sections.
Fill section with cold water making sure that no air pockets remain. Do not pressurise at this stage.
Check system for leaks. If none are apparent, check for and remove any remaining air. Increase pressure up to 3 bar. Do not pressurise further at this stage.
Leave section pressurised for 10 minutes. If pressure decays, inspect for leaks and rectify as necessary. If pressure remains constant, slowly increase the hydrostatic pressure to $11 / 2$ times nominal operating pressure.
Leave section pressurised for a period not exceeding 1 hour. During this time pressure should not change.

Caution

Personnel must stand well clear when pressure testing systems. Similarly, under no circumstances should pressure tests be carried out using pressurised gases. Such a test could be extremely dangerous and serves no useful purpose.

Note: If extended times are required to achieve hydrostatic pressure, either leakage has occurred or air remains in the line. Inspect for leakage and if none is apparent, reduce pressure and check for trapped air. This must be removed before further pressurisation commences.

Colour

Durapipe PVC-U products are a grey colour, generally in accordance with BS5252, colour ref. RAL 7011.

Auto CAD drawings

Both 2D \& 3D drawings of both metric and imperial products contained in this brochure are available either on our website www. durapipe.co.uk or via our technical support department.

Approvals and Quality Marks

Durapipe PVC-U pipe and fittings

Durapipe UK offer PVC-U pipework systems comprising pipes, fittings and valves, joined by solvent welding, together with associated accessories. Products are available in Imperial sizes from $1 / 2^{\prime \prime}$ to $12^{\prime \prime}$ (nominal bore) and Metric sizes from 16 mm to 315 mm (outside diameter).

PVC-U dimensions and standards

Imperial
The Durapipe PVC-U Imperial System is manufactured in accordance with the relevant British Standards as shown below. Kitemark licences are also held, where applicable, for both pipes and fittings BS 5391 (pipe) BS 5392 (fittings).

Metric

The Durapipe PVC-U Metric System is manufactured generally in accordance with the relevant international standards as shown below:
ISO 15493
EN 1452-2

Threaded fittings conform to the requirements of BS 21/DIN 2999/ISO7. Socket dimensions of Durapipe PVC-U Metric fittings for solvent welding comply with ISO/DIS 727-1.

Materials

Durapipe PVC-U material is UK Water Regulations Advisory Scheme approved for cold water services and is listed in the Water Fittings and Materials Directory.

Gaskets and seals

Gaskets and O-Ring seals are made from EPDM except where stated otherwise.

Compatibility

The components of each dimensional system are not interchangeable with each other, except for sizes $75 \mathrm{~mm} / 2^{1} 1_{2}{ }^{\prime \prime}$ and $140 \mathrm{~mm} / 5^{\circ}$. They can be joined by using the $\mathrm{mm} /$ imperial adaptor fittings or by flanges. They are, however, interchangeable with other piping products manufactured in accordance with the standards referred to.

Approvals and quality marks

- BSI (British Standard Institution UK) Licence N. KM 05802

Durapipe FIP PVC-U Imperial series fittings are covered by Kitemark Licence No. KM 05802 BS 4346-1.
Durapipe FIP PVC-U solvent cement is covered by Kitemark Licence No. KM6218 to BS 4346: Part 3.

- WRAS (Water regulations advisory scheme - UK) Certificate N. M103019 / 0402050 / 0201506 and 0201512

Durapipe FIP PVC-U Imperial series pipes and fittings are UK Water Regulations Advisory Scheme approved for conveying potable water certificate number M103019 / 0402050
Durapipe FIP PVC-U materials are also UK Water Regulations Advisory Scheme approved and are listed under 0706050 (2012), 0902701 (2014) and 1012518 (2015).
Durapipe FIP PVC-U solvent cement is UK Water Regulations Advisory Scheme approved under 1011527.

- Regulation 31 approved

Approved for use within public water supplies and by the Secretary of State and listed in the 'List of Approved Products' published by the DWI.

- IIP N. $\mathbf{1 2 2}$ Istituto Italiano dei Plastici (Italian Institute of Plastics) Durapipe FIP PVC-U fittings are manufactured in accordance with UNI EN 1452.
- ACS France (Attestation de conformité Sanitaire) N. 98 MAT NY 418

Durapipe FIP PVC-U is suitable for alimentary applications.

- NSF (National Sanitation Foundation USA) Certificate N. 11370/11371A

Suitability of Durapipe FIP PVC-U for use with drinking water.

- KIWA (Keurings Institut Voor Waterleiding Artikelen Holland) Certificate N. K5034/01

PVC-U fittings according to KIWA BRL K504.

- IRH

Durapipe FIP PVC-U fittings are acknowledged by IRH for ACS Certificate N. 05 MAT NY 006.

- BUREAU VERITAS (France) Certificate N. 07123 / CO BV

Suitability of Durapipe FIP PVC-U for transporting and treatment of sanitary water for naval applications.

- Ukrainian hygienic, safety and quality regulation. Certificate N. UA1.094.0052575-04

Durapipe FIP PVC-U fittings are certified in compliance with Ukrainian hygienic, safety and quality regulation.

- RINA - Registro Italiano Navale (Italian Register Naval) Certificate N. MAC/36401/TO/01

Suitability of Durapipe FIP PVC-U for transport and treatment of sanitary water and of conditioning for naval applications.

Reference standards that product is produced to

- ISO 15493 - Plastics piping systems in PVC-U for industrial applications.
- BS EN 1452 - Characteristics of PVC-U fittings and pipes of piping systems for water supply.
- ISO 727 - Pipes and fittings in PVC-U. Dimensions and tolerances metric series.
- ISO 4422 - Characteristics of PVC-U fittings of piping systems for water supply.
- DIN 8063 - PVC-U fittings, dimensions.
- KIWA (Keurings Institut Voor Waterleiding Artikelen Holland) KIWA BRL - K504 e KIWA BRL502 Characteristics of PVC-U fittings and pipes of piping systems for water supply.
- BSI (British Standard Institution UK) BS 4346-1 Characteristics of PVC-U fittings of piping systems for fluids under pressure.
- BS 3505-3506 - Characteristics of PVC-U pipes for industrial fluids and cold water.
- UNI ISO 228/1:1983-PVC-U fittings with threaded connections.
- DIN 2999 - PVC-U fittings with threaded connections.
- BS 21 - PVC-U fittings with threaded connections.
- ISO R7:1984-PVC-U fittings with threaded connections sealing tight.
- ISO 161/1 - PVC-U pipes and fittings dimensions, metric series.
- DIN 8062 - PVC-U pipes dimensions.
- ASTM D696 e DIN 53752 - Coefficient of linear thermal expansion, test and method.
- DVS 2204-1 - Solvent welding of thermoplastic materials PVC-U.
- UNI 11242 Solvent welding of PVC-U pipes, fittings and valves.

The production of the PVC-U product is in accordance with the highest quality standards and in full observance of the environmental practices imposed by current legislation.
All products are manufactured in accordance with ISO 9001 certified quality assurance programme. For more information please visit our website www.durapipe.co.uk

Ordering by code

Code numbers should be used when ordering products eg.
Imperial

Metric

Abbreviations

The following list of abbreviations is used in this catalogue:
ABS - Acrylonitrile Butadiene Styrene
ANSI - American National Standards Institute
BS - British Standards
BSP - British Standard Pipe Thread
DIN - Deutsche Industrie Normen (German Industrial Standards)
EPDM - Ethylene Propylene Rubber
FPM - Fluorine Rubber (eg. Viton ${ }^{\circledR}$)
ISO - International Standards Organisation
MEK - Methyl Ethyl Ketone
PN - Nominal Pressure
PTFE - Polytetrafluoroethylene (eg. Teflon ${ }^{\circledR}$)
PVC-C - Corzan, Chlorinated Polyvinyl Chloride
PVC-U - Unplasticised Polyvinyl Chloride
® Dupont registered trade name.

Mechanical, Physical and Electrical Data	Value
Mechanical	
UItimate tensile strength $\left(23^{\circ} \mathrm{C}\right)$	$53 \mathrm{MN} / \mathrm{m}^{2}$
Tensile strength at break	45.00 MPa
Young's Modulus	3060 MPa
Compressive strength	$55 \mathrm{MN} / \mathrm{m}^{2}$
Poisson's Ratio	0.35
Izod impact strength at $23^{\circ} \mathrm{C}$ (notched)	$0.08 \mathrm{~kJ} / \mathrm{m}^{2}$

Physical

Specific gravity	1.41
Softening point (ISO 306: 1994 method B120)	$77^{\circ} \mathrm{C}$
Linear coefficient of thermal expansion	$0.6 \mathrm{~mm} / \mathrm{m} / 10^{\circ} \mathrm{C}$
Heat distortion point	$74^{\circ} \mathrm{C}$
ASTM D648 - $4.5 \mathrm{MN} / \mathrm{m}$	
Thermal Conductivity	$0.147 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}$
Specific heat	$0.84-2.1 \mathrm{~J} / \mathrm{g}$
Electrical	3.0 at 106 Hz
Dielectric constant	$10^{16} \mathrm{ohm} / \mathrm{cm}$
Volume resistivity	

Product Specification

IMPERIAL RANGE

DURAPIPE PVC-U PIPES

In accordance with the dimensional and testing requirements of BS EN 1452, Third Party Approved with British Standard Kitemark Licence.

DURAPIPE PVC-U FITTINGS

In accordance with the dimensional and testing requirements of BS 4346 Part 1, Third Party Approved with British Standard Kitemark Licence.

MATCHED SYSTEM

The PVC-U products are designed to ensure complete integrity, quality and compatibility between pipes, fittings and valves. Manufacturers warranties may be compromised if a system is installed with materials from various manufacturers. Where this is not possible then any alternative products should be confirmed as being at least equivalent to that which is normally supplied.

QUALITY SYSTEM

Pipes, fittings and valves shall be manufactured in an environment, which operates a Quality Assurance System assessed to ISO 9001

ENVIRONMENTAL SYSTEM

The manufacturer of pipes, fittings and valves shall be able to demonstrate compliance with applicable environmental legislation and products shall be manufactured in an environment where documented performance reviews are undertaken and an Environmental Management System is successfully assessed to ISO 14001.

DRINKING WATER/ APPROVAL FOR USE IN CONTACT

Within private property boundaries all PVC-U pipes, fittings and solvent cement shall be listed in the Water Fittings and Materials Directory to show compliance with the requirements of the United Kingdom Water Regulations Advisory Service.
In any situation which could result in the PVC-U pipes, fittings and solvent cement coming into contact with water which is intended for human consumption these shall be in accordance with the requirements of BS 6920 Part 1.
Copies of certification of compliance with these approvals are available for inspection.
Approved for use within public water supplies and by the Secretary of State. Durapipe UK PVC-U pipe is listed in the 'List of Approved Products' published by the DWI.

THIRD PARTY APPROVALS

The manufacturer shall have the following Third Party Approvals:
BRITISH STANDARD KITEMARK LICENCE
KM06218 for solvent cement to BS 4346 Part 3
WRAS WATER REGULATIONS ADVISORY SCHEME
0112065 for Imperial fittings
0610503 for Durapipe solvent cement (5560)
DWI PRODUCT APPROVAL
DWI 56.4.937 Durapipe grey
PVC-U pipe NGS

DESIGN LIFE

Durapipe pipes and fittings are designed to operate continuously for 50 years at their maximum rated pressure at a working temperature of $20^{\circ} \mathrm{C}$ (valves have a design life of 25 years).

CHEMICAL SUITABILITY

The manufacturer shall publish detailed chemical resistance data to enable the suitability of the PVC-U material, seals and gaskets to be determined by designers and specifiers.
The manufacturer shall also employ a qualified and experienced Chemist and provide a free-of-charge advisory service for assessing the suitability of its PVC-U material, seals and gaskets.

INSTALLATION SPECIFICATION

The installation must be carried out by competent persons.
The contractor shall be required to provide technical documentation relating to the manufacturers recommended Installation procedures.
The manufacturer shall publish Installation recommendations, and shall also provide a free-of-charge training service for designers and installers, with appropriate written confirmation of attendance.
Temperature range $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (see page 8 for more details).

DURAPIPE PVC-U BALL VALVES

True union design, end load resistant with full pressure and shock resistant anti blow out device which conforms to design and endurance testing requirements of DIN 3441 Part 1, and DIN 3230 Part 3 Leak Rate One (Water and Air).
Drop Tight and Bubble Tight testing have been satisfactorily completed.
In addition, the following testing has been successfully conducted:
Hydrostatic Shell Test $1.5 \times$ Maximum Working Pressure
Seat Test $1.1 \times$ Maximum Working Pressure.
PRESSURE RATING
PN16 at $20^{\circ} \mathrm{C}$
SEATS AND SEALS
Seats: PTFE material fitted with O-Ring compensators.
Seals: Standard size 0-Ring type for ease of replacement,
in EPDM or FPM material.
END CONNECTIONS
Plain socket ends, or BSP threaded.
ACTUATION
Options: Electric or pneumatic.

DURAPIPE PVC-U TKD 3-WAY BALL VALVES

True union design. Options of ' L ' or ' T ' port configuration.
The following testing will have been successfully completed:
Drop Tight and Bubble Tight Test.
Hydrostatic Shell Test $1.5 \times$ maximum recommended pressure.
Seat Test $1.1 \times$ maximum working pressure.
PRESSURE RATING
$1^{\prime \prime}$ " to $2^{\prime \prime}$ - PN16 at $20^{\circ} \mathrm{C}$.
SEATS AND SEALS
Seats: PTFE material fitted with O-Ring compensators.
Seals: Standard size 0-Ring type for ease of replacement,
in EPDM or FPM material.
END CONNECTIONS
Plain socket ends or BSP threaded

DURAPIPE PVC-U DIAPHRAGM VALVES

Will be equipped with a maintenance free hand wheel actuator with spindle extension to indicate the position of the valve open or closed. The body retaining bolts will be fixed from the underside, to provide a crevice free outer surface to prevent accumulation of debris or risk of corrosion of exposed steel bolts from chemical spillage.
Valves will have been hydrostatically pressure tested to the requirements BS 4346 Part 1, BS 5156, ISO 7508 and DIN 3230 Part 3 Leak Rate One.
PRESSURE RATING
1_{12} " to $4^{\prime \prime}$ - PN10 at $20^{\circ} \mathrm{C}$
DIAPHRAGM TYPE
Choice of EPDM, FPM or PTFE will be available.
END CONNECTION
Socket union ended ${ }^{1} / 2^{\prime \prime}$ to $2^{\prime \prime}$. Spigot ended $2^{1 / 2 "}$ to $4^{\prime \prime}$.
ACTUATION
Options - Pneumatic
DURAPIPE PVC-U BALL CHECK VALVES
These shall be double union with plain socket or BSP threaded end.
PRESSURE RATING
$1_{1 / 2}$ " to $2^{\prime \prime}$ - PN16 at $20^{\circ} \mathrm{C}$.
SEALS
Seals: Will be EPDM or FPM material.

DURAPIPE BUTTERFLY VALVES

Reinforced Polypropylene body, fully lined, with PVC disc.
Full flanged design, with oval holes/inserts to suit various standard flange drillings.
Lever operated, with $10 \times 10^{\circ}$ position stops, and locking device.
PRESSURE RATING
11/2" to 2" - PN16
$2^{\prime \prime}$ to $10^{\prime \prime}-\mathrm{PN} 10$ at $20^{\circ} \mathrm{C}$
$12^{\prime \prime}-\mathrm{PN} 8$ at $20^{\circ} \mathrm{C}$
PRIMARY LINER
Available in EPDM or FPM
ACTUATION
Electric, Pneumatic, or Gearbox (standard on sizes over 8")

METRIC RANGE

DURAPIPE PVC-U PIPES

In accordance with the requirements of EN 1452-2, DIN 8061/2, and ISO DIS 15493. Pressure rating PN10 or 16.

DURAPIPE PVC-U FITTINGS

In accordance with the requirements of EN 1452-3, DIN 8063, ISO 727 and ISO DIS 15493. Pressure rating PN16 up to size 160 mm , and PN10 in larger sizes.

MATCHED SYSTEM

Durapipe PVC-U products are designed to ensure complete integrity, quality and compatibility between pipes, fittings and valves. Warranties are compromised if a system is installed with materials from various manufacturers. Where this is not possible then any alternative products should be confirmed as being at least equivalent to that which is normally supplied.

QUALITY SYSTEM

Pipes, fittings and valves shall be manufactured in an environment which operates a Quality Assurance System assessed to ISO 9001.

ENVIRONMENTAL SYSTEM

The manufacturer of pipes, fittings, and valves shall be able to demonstrate compliance with applicable environmental legislation and products shall be manufactured in an environment where documented performance reviews are undertaken and an Environmental Management System is successfully assessed to ISO 14001.

APPROVAL FOR USE IN CONTACT WITH DRINKING WATER

Within private property boundaries all PVC-U pipes, fittings and solvent cement shall be listed in the Water Fittings and Materials Directory to show compliance with the requirements of the United Kingdom Water Regulations Advisory Service.
In any situation which could result in the PVC-U pipes, fittings and solvent cement coming into contact with water which is intended for human consumption these shall be in accordance with the requirements of BS 6920 Part 1.
Copies of certification of compliance with these approvals are available for inspection.
Approved for use within public water supplies and by the Secretary of State. Durapipe UK PVC-U pipe is listed in the 'List of Approved Products' published by the DWI.

THIRD PARTY APPROVALS

The manufacturer shall have the following Third Party Approvals:
WRAS WATER REGULATIONS ADVISORY SCHEME
0402050 for Metric size pipe and fittings
0610503 for Durapipe solvent cement (5560)
DWI PRODUCT APPROVAL
DWI 56.4.937 Durapipe grey
PVC-U pipe NGS

DESIGN LIFE

Durapipe pipes and fittings are designed to operate continuously for 50 years at their maximum rated pressure at a working temperature of $20^{\circ} \mathrm{C}$ (valves have a design life of 25 years).

CHEMICAL SUITABILITY

The manufacturer shall publish detailed chemical resistance data to enable the suitability of the PVC-U material, seals and gaskets to be determined by designers and specifiers.
The manufacturer shall also employ a qualified and experienced Chemist and provide a free-of-charge advisory service for assessing the suitability of its PVC-U material, seals and gaskets.

INSTALLATION SPECIFICATION

The installation must be carried out by competent persons.
The contractor shall be required to provide technical documentation relating to the manufacturers recommended Installation procedures. The manufacturer shall publish Installation recommendations, and shall also provide a free-of-charge training service for designers and installers, with appropriate written confirmation of attendance. Temperature range $+5{ }^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (see page 8 for more details).

DURAPIPE PVC-U BALL VALVES

True union design, end load resistant with full pressure and shock resistant anti blow out device which conforms to design and endurance testing requirements of DIN 3441 Part 1, and DIN 3230 Part 3 Leak Rate One (Water and Air).
Drop Tight and Bubble Tight testing have been satisfactorily completed. In addition, the following testing has been successfully conducted:
Hydrostatic Shell Test $1.5 \times$ Maximum Working Pressure.
Seat Test $1.1 \times$ Maximum Working Pressure.
PRESSURE RATING
PN16 at $20^{\circ} \mathrm{C}$
SEATS AND SEALS
Seats: PTFE material fitted with O-Ring compensators.
Seals: Standard size O-Ring type for ease of replacement, in EPDM or FPM material.
END CONNECTIONS
Plain socket ends, BSP threaded or flanged.
ACTUATION
Options: Electric or Pneumatic.

DURAPIPE PVC-U TKD 3-WAY BALL VALVES

True union design. Options of 'L' or 'T' port configuration.
The following testing will have been successfully completed:
Drop Tight and Bubble Tight Test.
Hydrostatic Shell Test 1.5 x maximum recommended pressure.
Seat Test $1.1 \times$ maximum working pressure.
PRESSURE RATING
16 mm to $63 \mathrm{~mm}-\mathrm{PN} 16$ at $20^{\circ} \mathrm{C}$.
SEATS AND SEALS
Seats: PTFE material fitted with O-Ring compensators.
Seals: Standard size O-Ring type in EPDM or FPM material.
END CONNECTIONS
Plain socket ends or BSP threaded.

DURAPIPE PVC-U DIAPHRAGM VALVES

These are equipped with a maintenance free hand wheel actuator with spindle extension to indicate the position of the valve open or closed. The body retaining bolts are fixed from the underside to provide a crevice free outer surface to prevent accumulation of debris or risk of corrosion of exposed steel bolts from chemical spillage.
Valves have been hydrostatically pressure tested to the requirements of DIN 8063, ISO 5208, ISO 7508 and DIN 3230 Part 3 Leak Rate One.
PRESSURE RATING
20 mm to $110 \mathrm{~mm}-\mathrm{PN} 10$ at $20^{\circ} \mathrm{C}$
DIAPHRAGM TYPE
Choice of EPDM, FPM or PTFE will be available.
END CONNECTION
Socket union ended 20 mm to 63 mm . Spigot ended 75 mm to 110 mm .
ACTUATION
Options: Pneumatic

DURAPIPE PVC-U BALL CHECK VALVES

These shall be double union with plain socket or BSP threaded end.
PRESSURE RATING
20 mm to $63 \mathrm{~mm}-\mathrm{PN} 16$ at $20^{\circ} \mathrm{C}$.
SEALS
Seals: Will be EPDM or FPM material.

DURAPIPE BUTTERFLY VALVES

Reinforced Polypropylene body, fully lined, with PVC disc.
Full flanged design, with oval holes/inserts to suit various standard flange drillings.
Lever operated, with $10 \times 10^{\circ}$ position stops, and locking device
PRESSURE RATING
50 mm to 63 mm - PN16
75 mm to $250 \mathrm{~mm}-\mathrm{PN} 10$ at $20^{\circ} \mathrm{C}$
315 mm - PN8 at $20^{\circ} \mathrm{C}$
PRIMARY LINER
Available in EPDM or FPM

ACTUATION

Electric, Pneumatic, or Gearbox (standard on sizes over 225 mm).

Optima Pipe page 30

Elbows 90° (plain) page 33

End caps (plain) page 35

Reducing bushes (plain/threaded) page 37

Hose adaptors (female threaded) page 39

Reducing bushes (threaded) page 40

Pipe
page 31

Tees 90° equal (plain) page 33

Socket unions (plain) page 35

Male threaded adaptors (plain/threaded) page 37

Tank connectors (plain/threaded) page 39

Reducers
(threaded)
page 40

PVC-U Clear Pipe (plain) page 31

Bends $22^{1} \Omega^{\circ}$
long radius page 34

Imperial/M etric socket adaptors (plain) page 35

Female threaded adaptors (plain/threaded) page 37

Composite unions (plain/threaded male brass) page 39

Reducers (threaded) page 41

Sockets (plain) page 32

Bends 45°
long radius (plain) page 34

Sockets (plain/threaded) page 36

Barrel nipples page 38

Composite unions (plain/threaded female brass) page 39

Elbows 45° (threaded) page 41

Reducing bushes (plain) page 32

Bends 90°
long radius (plain) page 34

Elbows 90° (plain/threaded) page 36

Hose adaptors (male threaded short pattern) page 39

Socket unions
(plain/threaded) page 40

Elbows 90° (threaded) page 41

Elbows 45° (plain) page 32

Bends 90° short radius (plain) page 34

Tee (plain/threaded) page 36

Hose adaptors (male threaded long pattern) page 38

Sockets (threaded) page 40

Tees 90° equal (threaded) page 42

End caps (threaded) page 42

Flanges full face (drilled and undrilled) page 44

Plugs (threaded) page 42

Flanges blanking (drilled and undrilled) page 45

Hexagon nipples (threaded) page 42

Backing rings
page 45-47

Back nuts (threaded) page 43

Gaskets flat page 47

Socket unions (threaded) page 43

Gaskets full face (drilled) page 48

Flanges stub serrated page 43

Valve support plates page 48

Valves

Flange assemblies page 49

SXE Easyfit ball check valves page 51

Transparent service plugs page 53

VKD Double union ball valves (manual) page 50

SXA Easyfit air release valves page 51

Die cut labels page 53

Cobra pipe clips page 54

Saddle clips
page 55

RV Y-Type Strainers page 52

Accessories

One-step solvent cement page 54

[^0]

TKD 3-way valves page 50

VM Diaphragm valves page 52

Eco-cleaner page 54

HCR-36 Chemically resistant PVC cement page 54

Cleaner for use with HCR-36 Chemically resistant PVC cement page 54

Duappecierstwodiferent PNCUApeqpions.. youdeidel

Option 1

Fully approved PVC-U pipe

for where approved materials are required
Approvals

- WRAS approved
- BSI Kitemork licensed
- Regulation 31 (DWI)

Application

- Drinking wacter supply
- Water treotment

Option 2

Up to 27\% tower price

Optima PVC-U pipe
For where standard PVC-U is ideal
Approvols

- WRAS approved

Application

- Stondord PVC-U opplications

See page 58 for metric sizes.

Class C 9 bar @ $20^{\circ} \mathrm{C}$

Size					$\mathbf{d}_{\mathbf{1}}$

Class E 15 bar @ $20^{\circ} \mathrm{C}$

Size		$\mathbf{d}_{\mathbf{1}}$	\mathbf{t}	SL	kg/m	Code
$1 / 2$	21.4	1.9	6	0.16	06516102	
$3 / 4$	26.7	2.2	6	0.23	06516103	
1	33.6	2.5	6	0.32	06516104	
$11 / 4$	42.2	3.0	6	0.52	06516105	
$11 / 2$	48.3	3.4	6	0.67	06516106	
2	60.3	4.2	6	1.00	06516107	
3	88.9	6.2	6	2.13	06516109	
4	114.3	7.9	6	3.73	06516110	
6	168.3	11.7	6	8.02	06516112	

Class C 9 bar @ $20^{\circ} \mathrm{C}$

Size	$\mathbf{d}_{\mathbf{1}}$	\mathbf{t}	$\mathbf{S L}$		$\mathbf{k g} / \mathbf{m}$
Code					
2	60.3	2.8	6	0.73	06511107
3	88.9	3.8	6	1.05	06511109
4	114.3	4.9	6	2.43	06511110
6	168.3	7.1	6	4.89	06511112
8	218.8	8.4	6	7.69	06511113

Class D 12 bar @ $20^{\circ} \mathrm{C}$

Size	d_{1}	t	SL	kg/m	Code
11/4	42.2	2.5	6	0.42	06512105
11/2	48.3	2.8	6	0.54	06512106
2	60.3	3.4	6	0.84	06512107
3	88.9	5.0	6	1.85	06512109
4	114.3	6.5	6	3.12	06512110
5	140	7.3	6	4.54	06512111
6	168.3	9.5	6	6.97	06512112
8	218.8	11.1	6	9.98	06512113

Class E 15 bar @ $20^{\circ} \mathrm{C}-6 \mathrm{~m}$ lengths

Size		$\mathbf{d}_{\mathbf{1}}$	\mathbf{t}	SL	kg/m
$1 / 2$	21.4	1.9	6	0.16	06513102
$3 / 4$	26.7	2.2	6	0.23	06513103
1	33.6	2.5	6	0.32	06513104
$11 / 4$	42.2	3.0	6	0.52	06513105
$11 / 2$	48.3	3.4	6	0.67	06513106
2	60.3	4.2	6	1.00	06513107
3	88.9	6.2	6	2.13	06513109
4	114.3	7.9	6	3.73	06513110
6	168.3	11.7	6	8.02	06513112

Class 712 bar @ $20^{\circ} \mathrm{C}$ after threading

Size		$\mathbf{d}_{\mathbf{1}}$	\mathbf{t}	SL	
$1 / 2$	21.4	4.0	6	0.31	06514102
$3 / 4$	26.7	4.2	6	0.43	06514103
1	33.6	4.8	6	0.62	06514104
$1^{1} 4$	42.2	5.2	6	0.85	06514105
$11_{1} / 2$	48.3	5.5	6	1.04	06514106
2	60.3	5.9	6	1.43	06514107

PVC-U Clear Pipe Plain

Size	PN	L	z	E	gms	Code
1/2	15	17	2	27	13	02100102
3/4	15	20	2	33	15	02100103
1	15	23	2	41	36	02100104
*11/4	12	26	3	50	58	02100105
$11 / 2$	15	31	3	61	118	02100106
2	15	38	3	76	206	02100107
*21/2	12	44	4	90	250	33100312
3	15	51	6	108	420	02100109
4	15	63	5	131	680	02100110
5	15	78	7	171	1240	33100316
6	15	90	10	195	1800	02100112
*8	12	116	12	257	4950	02100113
**10	9	150	10	307	5800	02100114
**12	9	165	13	362	9800	02100115

*Class D **Class C
Reducing bushes Plain

Fig. A

Size	PN	L	z	gms	Fig	Code
$3 / 4 \times 1 / 2$	15	20	3	6	A	02109122
$1 \times 1 / 2$	15	23	7	18	A	02109123
$1 \times 3 / 4$	15	23	3	10	A	02109124
$11 / 4 \times 1$	15	27	4	19	A	02109125
$11^{1 / 2} \times 3 / 4$	15	30	10	40	B	02109119
$11 / 2 \times 1$	15	30	8	42	A	02109126
$11 / 2 \times 11 / 4$	15	31	4	20	A	02109127
$2 \times 3 / 4$	15	36	17	75	B	02109120
2×1	15	36	7	50	B	02109128
$2 \times 1 \frac{1}{4}$	15	38	12	80	B	02109129
$2 \times 1 / 1 / 2$	15	38	7	50	B	02109130
$21 / 2 \times 2$	15	44	8	100	A	02109131
$3 \times 1 / 1 / 2$	15	51	21	200	B	02109134
3×2	15	51	13	167	B	02109135
$3 \times 21 / 2$	15	51	7	125	A	02109136
4×2	15	63	27	250	B	02109140
4×3	15	63	12	331	A	02109141
5×4	15	76	15	460	B	02329142
*6 $\times 4$	12	93	27	972	B	02109147
* 8×6	12	110	23	1400	B	02109152
**10 x 8	9	144	25	3500	A	02109151
**12 $\times 10$	9	169	26	4100	A	02109153

*Class D **Class C

Elbows 45° Plain

Size	PN	L	z	E	gms	Code
$1 / 2$	15	17	5	27	13	02119102
3/4	15	20	6	33	20	02119103
1	15	23	7	41	45	02119104
$11 / 4$	15	26	11	50	85	02119105
11/2	15	31	12	61	155	02119106
2	15	38	14	76	291	02119107
21/2	15	44	17	90	315	33119312
3	15	51	22	108	565	02119109
4	15	61	26	131	740	02119110
5	15	115	37	173	1660	33119316
6	15	134	41	198	3080	02119112
8	9	182	65	259	7250	02119113
**10	9	206	66	307	9800	02119114
**12	9	243	78	363	15500	02119115

Size	PN	L	Z	E	gms	Code
1/2	15	17	11	27	15	02115102
3/4	15	20	14	33	30	02115103
1	15	23	17	41	45	02115104
* $11 / 4$	12	27	22	54	110	02115105
$11 / 2$	15	31	27	61	160	02115106
2	15	38	34	76	340	02115107
*21/2	12	44	41	90	427	33115312
3	15	51	48	108	768	02115109
4	15	63	58	131	972	02115110
5	15	153	76	173	2080	33115316
*6	12	90	90	195	3480	02115112
*8	12	116	170	257	8850	02115113
**10	9	286	146	307	13300	02115114
**12	9	340	175	365	20300	02115115

* Class D
** Class C

Tees 90° Equal plain

TLV

Size	PN	L	Z	E	gms	Code
$1 / 2$	15	17	11	27	26	02122102
3/4	15	20	14	33	30	02122103
1	15	23	17	41	55	02122104
*11/4	12	26	22	50	90	02122105
11/2	15	31	27	61	257	02122106
2	15	38	34	76	495	02122107
* $21 / 2$	12	44	41	90	560	33122312
3	15	51	48	108	570	02122109
4	15	63	59	131	1260	02122110
5	15	76	77	174	4150	33122316
*6	12	90	90	195	4400	02122112
*8	12	116	116	257	10500	02122113
**10	9	159	150	306	18600	02122114
**12	9	176	175	361	27200	02122115

* Class D
** Class C

Bends $221 / 2^{\circ}$ Long radius

Size		PN	C	E	R	gms
Code						
1	15	76	38	102	50	02311104
$11 / 2$	15	110	57	225	148	02311106
2	15	113	73	270	285	02311107
3	15	202	114	392	858	02311109
4	15	262	152	518	1804	02311110
6	15	385	229	740	5993	02311112

Tolerance on angle $\pm 3^{\circ}$

Bends 45° Long radius plain

| Size | PN | C | E | R | gms | Code |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15 | 75 | 37 | 102 | 77 | 02310104 |
| $11 / 2$ | 15 | 113 | 55 | 225 | 204 | 02310106 |
| 2 | 15 | 152 | 73 | 270 | 316 | 02310107 |
| 3 | 15 | 238 | 121 | 392 | 1080 | 02310109 |
| 4 | 15 | 300 | 145 | 518 | 2235 | 02310110 |
| 6 | 15 | 440 | 218 | 740 | 7340 | 02310112 |

[^1]Bends 90° Long radius plain

Size	PN	C	E	R	gms	Code
3	15	403	98	392	1510	02309109
4	15	545	138	518	3350	02309110
6	15	817	207	740	11000	02309112

Bends 90° Short radius plain

Size	PN	E	L	Z	gms	Code
$1 / 2$	15	28	16	40	45	02118102
$3 / 4$	15	34	19	50	75	02118103
1	15	41	22	64	120	02118104
$11 / 4$	15	51	26	80	205	02118105
$11 / 2$	15	65	31	100	310	02118106
2	15	77	38	126	510	02118107
$21 / 2$	15	94	44	150	1000	33118312
3	15	113	51	180	1765	02118109
4	15	137	61	220	2805	02118110

End caps Plain
*Class D
Socket unions plain

Imperial/metric socket adaptors Plain
MILV

Size	PN		\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$	E	Z	
gms	Code						
$1 / 2 \times 20$	15	16	17	27	3	12	33345102
$3 / 4 \times 25$	15	19	20	33	3	22	33345103
1×32	15	22	23	41	3	44	33345104
$11 / 4 \times 40$	15	26	27	50	2	65	33345105
$11 / 2 \times 50$	15	31	30	61	4	125	33345106
2×63	15	38	36	76	5	210	33345107
$21 / 2 \times 75$	15	44	44	90	4	1250	33345108
3×90	15	51	51	108	6	438	33345109
4×110	15	61	63	131	4	852	33345110

Size	PN	L	L_{1}	Z	E	K	gms	Code
$1 / 2$	12	16	15	4	27	24	15	02101102
3/4	12	20	17	5	33	29	25	02101103
1	12	23	20	5	41	35	45	02101104
11/4	12	27	21	4	50	43	65	02101105
$11 / 2$	12	30	21	8	61	50	100	02101106
2	12	36	26	9	76	61	160	02101107
$21 / 2$	12	44	31	18	90	76	260	33101108
3	12	51	34	23	108	108	449	02101109
4	12	61	39	10	129	129	555	02101110

Elbows 90° Plain/BSP threaded

GLFV

Size	PN	L	L_{1}	Z	Z_{1}	E	gms	Code
1/2	12	17	15	11	12	27	13	02116102
3/4	12	20	17	14	17	33	25	02116103
1	12	23	19	17	20	41	55	02116104
11/4	12	27	22	22	27	54	120	02116105
$11 / 2$	12	31	21	27	37	61	170	02116106
2	12	38	26	34	46	76	340	02116107
21/2	12	44	30	41	54	90	420	02116108
3	12	51	33	48	66	108	750	02116108
4	12	63	39	58	82	131	1050	02116110

Tee Plain/threaded branch
TLFV

Size	$\mathbf{P N}$		$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{Z}_{\mathbf{1}}$	$\mathbf{Z}_{\mathbf{2}}$	\mathbf{E}	gms	
Code									
$1 / 2$	12	16	15	11	12	28	49	02123102	
$3 / 4$	12	19	16	14	16	34	55	02123103	
1	12	22	19	17	20	42	75	02123104	
$11 / 4$	12	26	21	21	25	51	125	02123105	
$11 / 2$	12	31	21	26	35	61	200	02123106	
2	12	38	25	33	45	75	380	02123107	
$21 / 2$	12	44	30	39	52	89	530	02123108	
3	12	51	33	47	64	106	845	02123109	

Size	PN	B	\mathbf{Z}_{1}	gms	Code
$1 / 2 \times 3 / 8$	12	16	6	5	02111121
$3 / 4 \times 1 / 2$	12	20	5	9	02111122
$1 \times 3 / 4$	12	25	6	15	02111124

Male threaded adaptors Plain/male BSP threaded

Size	$\mathbf{P N}$		$\mathbf{L}_{\mathbf{1}}$		$\mathbf{L}_{\mathbf{2}}$		$\mathbf{L}_{\mathbf{3}}$	\mathbf{H}
\mathbf{y}	$\mathbf{0}$	gms		Code				
$1 / 2 \times 1 / 2$	12	16	19	15	46	30	15	02151102
$3 / 4 \times 3 / 4$	12	19	22	16	50	36	25	02151103
1×1	12	22	26	19	57	46	40	02151104
$11 / 4 \times 11 / 4$	12	26	31	21	67	55	70	02151105
$11 / 2 \times 1 / 2$	12	31	38	21	74	65	115	02151106
$11 / 2 \times 11 / 2$	12	31	38	21	74	65	115	02151107

Female threaded adaptors Plain/female BSP threaded

Size	PN		\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$	Z	H	K	
gms	Code							
$1 / 2 \times 1 / 2$	12	16	15	4	27	24	15	02153102
$3 / 4 \times 3 / 4$	12	20	16	5	33	29	25	02153103
1×1	12	23	19	5	41	35	45	02153104
$11 / 4 \times 11 / 4$	12	27	21	4	50	43	65	02153105
$11 / 2 \times 11 / 2$	12	30	21	8	61	50	100	02153106
2×2	12	36	26	9	76	61	160	02153107

Barrel nipples Plain/BSP threaded

Size	PN	B	D	gms	Code
$1 / 2$	12	49	16	15	02316102
$3 / 4$	12	55	18	20	02316103
1	12	62	21	35	02316104
$1^{1 / 4}$	12	72	23	60	02316105
$1^{1 / 2}$	12	87	30	45	02316106
2	12	87	30	115	02316107
$21 / 2$	12	106	35	180	02316108
3	9	129	31	300	02316109
4	9	153	37	560	02316110

PVC nipples are made from Durapipe PVC-U pipes.

Threaded barrel nipple Plain/BSP threaded

Size		PN	B		D		gms	02317102
$1 / 2$	12	49	16	15	02317103			
$3 / 4$	12	55	18	20	02317			
1	12	62	21	35	02317104			
$11 / 4$	12	72	23	55	02317105			
$11 / 2$	12	87	30	75	02317106			
2	12	87	30	105	02317107			
$21 / 2$	12	105	30	169	02317108			
3	9	127	38	250	02317109			
4	9	150	40	500	02317110			

PVC nipples are made from Durapipe PVC-U pipes.

Hose adaptors Male BSP threaded - short pattern

Hose adaptors Male BSP threaded - long pattern

$$	PN	L	H	gms	Code
$1 / 4 \times 12 \times 14$	16	11	56	7	02157600
$3 / 8 \times 16 \times 18$	16	11	58	14	02157602
$1 / 2 \times 20 \times 22$	16	15	66	19	02157605
$3 / 4 \times 25 \times 27$	16	16	81	30	02157608
$1 \times 30 \times 32$	16	19	97	45	02157612
$11 / 4 \times 40 \times 42$	16	21	104	85	02157616
$11 / 2 \times 50 \times 52$	16	21	111	120	02157622
$2 \times 60 \times 64$	16	26	123	180	02157630

Hose adaptors Female BSP threaded - loose nut with EPDM gasket ADV

* Thread size designation.

Tank connectors Plain/BSP threaded EPDM gasket

Size	PN		A	B	D	gms		Code
$1 / 2$	12	28	70	29	34	02235102		
$3 / 4$	12	33	76	32	39	02235103		
1	12	46	102	42	110	02235104		
$1^{1 / 4}$	12	50	120	44	154	02235105		
$1^{1 / 2}$	12	59	165	61	207	02235106		
2	12	79	153	59	358	02235107		
$2^{1 / 2}$	12	90	164	94	471	02235108		
3	12	105	204	90	656	02235109		
4	12	135	230	130	1345	02235110		

| Size | PN | L | Z | L | H | K | Code |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $1 / 2$ | 16 | 13.5 | 35.5 | 16 | 65 | 41 | 02217102 |
| $3 / 4$ | 16 | 15 | 38.5 | 19 | 72.5 | 50 | 02217103 |
| 1 | 16 | 17.5 | 40.5 | 22 | 80 | 58 | 02217104 |
| $11 / 4$ | 16 | 19.5 | 45.5 | 26 | 91 | 72 | 02217105 |
| $11 / 2$ | 16 | 19.5 | 50.5 | 31 | 101 | 79 | 02217106 |
| 2 | 16 | 24 | 60.5 | 38 | 122.5 | 98 | 02217107 |

Fitted with brass retaining nut and EPDM rubber seal.
Stainless steel options also available on request.

Composite unions Plain/BSP threaded female brass

Size	PN	$\mathbf{L}_{\mathbf{1}}$	Z		L	H		K
16	Code							
$1 / 2$	16	16.5	16	16	48.5	25	02212102	
$3 / 4$	16	18.5	17	19	54.5	32	02212103	
1	16	19.5	18	22	59.5	38	02212104	
$11 / 4$	16	21.5	21	26	68.5	48	02212105	
$11 / 2$	16	23	24.5	31	84.5	55	02212106	
2	16	27	29.5	38	94.5	69	02212107	

Fitted with brass retaining nut and EPDM rubber seal.
Stainless steel options also available on request.

Size	PN	L_{1}	L_{2}	Z_{1}	Z_{2}	F	E	gms	Code
1/2	12	16	15	3	11	1	42	42	02202102
3/4	12	19	16	3	13	$11 / 4$	52	70	02202103
1	12	22	19	3	13	$11 / 2$	59	96	02202104
11/4	12	26	21	3	17	2	72	155	02202105
$11 / 2$	12	31	21	3	24	21/4	79	237	02202106
2	12	38	25	3	30	23/4	96	405	02202107

Sockets BSP threaded MFV

Size	PN	L	Z	E	K		gms
Code							
$1 / 2$	16	15	7	29	29	17	02102102
$3 / 4$	16	16	9	35	35	26	02102103
1	16	19	9	43	43	42	02102104
$11 / 4$	16	21	11	50	50	53	02102105
$11 / 2$	16	21	18	61	61	108	02102106
2	16	26	20	76	76	190	02102107
$21 / 2$	16	30	31	90	90	275	02102108
3	16	33	41	108	108	500	02102109
4	16	39	49	130	131	665	02102110

Reducing bushes BSP threaded
DFV

Size	PN	L_{1}	L	H	Z	K	E	gms	Code
$1 / 2 \times 3 / 8$	16	15	11	24	13	23	28	7	02113121
$3 / 4 \times 1 / 2$	16	16	15	27	12	28	34	9	02113122
$1 \times 3 / 4$	16	19	16	31	14	35	40	17	02113124
$11 / 4 \times 1$	16	21	19	34	15	44	52	30	02113125
$11 / 2 \times 11 / 4$	16	21	21	35	14	51	58	30	02113127
$2 \times 1 \frac{1 / 2}{}$	16	26	21	40	19	64	70	72	02113130

Reducers BSP threaded, female / reduced male IFFV

Size	PN	L	L_{1}	H	K	gms	Code
$3 / 4 \times 1 / 2$	16	15	16	41	36	22	02174122
$1 \times 1 / 2$	16	15	19	44	46	30	02174123
$1 \times 3 / 4$	16	16	19	45	46	42	02174124
$11 / 4 \times 1$	16	19	21	55	55	55	02174125
$11 / 2 \times 11 / 4$	16	21	21	62	65	102	02174127
$2 \times 11 / 2$	16	21	26	69	80	165	02174130
$21 / 2 \times 2$	16	26	30	81	95	210	02174131
$3 \times 21 / 2$	16	30	33	93	110	360	02174136
4×3	16	33	39	106	130	500	02174141

Fig A

Fig B

Size	PN	H	L_{1}	L	E	K	Fig	gms	Code
$1 / 2 \times 3 / 8$	16	35	11	15	28	23	A	10	02173121
$3 / 4 \times 3 / 8$	16	36	11	16	34	28	A	12	02173164
$3 / 4 \times 1 / 2$	16	39	15	16	34	28	A	15	02173122
$1 \times 3 / 8$	16	41	11	19	40	35	A	20	02173166
$1 \mathrm{x}^{1 / 2}$	16	44	15	19	40	35	A	24	02173123
$1 \times 3 / 4$	16	46	16	19	40	35	A	25	02173124
$11 / 4 \times 1 / 2$	16	48	15	21	52	44	A	37	02173116
$11 / 4 \times 3 / 4$	16	49	16	21	52	44	A	37	02173117
$11 / 4 \times 1$	16	52	19	21	52	44	A	40	02173125
$1^{1 / 2} \times 1 / 2$	16	52	15	21	58	51	A	46	02173118
$1^{1 / 2} \times 3 / 4$	16	50	16	21	58	51	A	47	02173119
$11 / 2 \times 1$	16	55	19	21	58	51	A	52	02173126
$11 / 2 \times 11 / 4$	16	57	21	21	58	51	A	54	02173127
$2 \times 3 / 4$	16	60	16	26	70	64	A	80	02173120
2×1	16	63	19	26	70	64	A	80	02173128
$2 \times 11 / 4$	16	65	21	26	70	64	A	85	02173129
$2 \times 1 \frac{1 / 2}{}$	16	65	21	26	70	64	A	102	02173130
$2^{1 / 2} \times 11 / 4$	12	64	30	21	51	80	A	15	02173167
$21 / 2 \times 11 / 2$	12	64	30	21	58	80	A	25	02173168
$21 / 2 \times 2$	16	56	26	30	-	80	B	155	02173131
$3 \times 1{ }^{1 / 2}$	12	68	33	21	58	95	A	40	02173134
3×2	16	66	26	33		93	B	185	02173135
$3 \times 21 / 2$	16	66	30	33	-	93	B	200	02173136
4×2	12	79	39	26	72	120	A	70	02173140
$4 \times 21 / 2$	12	83	39	30	89	120	A	115	02173169
4×3	16	79	33	39	-	118	B	500	02173141

Size	PN		L	Z	E	gms
Code						
$1 / 2$	16	15	7	28	18	02120102
$3 / 4$	16	16	8	33	24	02120103
1	16	19	11	41	45	02120104
$1^{1 / 4}$	16	21	15	50	68	02120105
$1^{1 / 2}$	16	2	21	64	154	02120106
2	16	26	26	76	255	02120107
$2^{1 / 2}$	16	30	31	90	345	02120108
3	16	33	39	107	325	02120109

Elbows 90° BSP threaded
GFV

Size	PN	L	Z	E	gms	Code
3/8	16	15	7	28	18	02117101
$1 / 2$	16	15	13	29	24	02117102
3/4	16	16	17	35	40	02117103
1	16	19	21	43	72	02117104
11/4	16	21	27	54	130	02117105
$11 / 2$	16	21	36	61	185	02117106
2	16	26	46	76	350	02117107
$21 / 2$	16	30	55	91	450	02117108
3	16	33	66	108	835	02117109
4	16	39	80	130	1135	02117110

Size	PN		L	Z		E	
gms	Code						
$1 / 2$	16	15	13	29	32	93125102	
$3 / 4$	16	16	17	35	52	93125103	
1	16	19	22	43	92	93125104	
$11 / 4$	16	21	27	50	117	93125105	
$1 / 2$	16	21	37	61	260	93125106	
2	16	26	46	76	465	93125107	
$21 / 2$	16	30	55	91	640	93125108	
3	16	33	66	109	1135	93125109	
4	16	39	83	133	1710	93125110	

End caps BSP threaded

Size	PN	L	H	K	gms	Code
$1 / 2$	16	15	25	28	10	02141102
$3 / 4$	16	16	27	34	15	02141103
1	16	19	28	42	27	02141104
$11 / 4$	16	21	31	51	40	02141105
$11 / 2$	16	21	36	58	53	02141106
2	16	26	42	71	85	02141107
$21 / 2$	12	30	50	89	251	02141108
3	16	33	55	109	310	02141109
4	12	39	59	130	623	02141110

Plugs BSP threaded

Fig A

Fig B

Size	PN	L	H	E	K	Fig	gms	Code
1/2	16	15	26	28	23	A	8	02155102
3/4	16	16	30	34	28	A	11	02155103
1	16	19	34	40	35	A	21	02155104
$11 / 4$	16	21	38	52	44	A	30	02155105
$11 / 2$	16	21	40	58	51	A	46	02155106
2	16	26	47	70	64	A	74	02155107
$2^{1 / 2}$	12	30	51	-	80	B	160	02155108
3	12	33	55	-	95	B	235	02155109
4	12	39	61	-	120	B	360	02155110

Hexagon nipples BSP threaded

Fig A

Fig B

Size	PN	H	K	E	L	Fig	gms	Code
$1 / 2$	16	41	23	28	15	A	10	02106102
3/4	16	45	28	34	16	A	16	02106103
1	16	51	35	40	19	A	27	02106104
11/4	16	57	44	52	21	A	40	02106105
$11 / 2$	16	58	51	58	21	A	55	02106106
2	16	68	64	70	26	A	93	02106107
21/2	12	78	80	-	30	B	150	02106108
3	12	85	95	-	33	B	225	02106109
4	12	97	120	-	39	B	380	02106110

Size	PN	A	B	C	gms	Code
$1 / 2$	12	28	13	38	10	02159102
3/4	12	33	13	38	19	02159103
1	12	45	16	54	24	02159104
11/4	12	50	18	58	25	02159105
$11 / 2$	12	60	19	69	39	02159106
2	12	79	21	91	83	02159107
21/2	12	94	22	106	-	02159108
3	12	110	26	125	-	02159109
4	12	138	29	151	-	02159110

Socket unions BSP threaded/EPDM seals
BFV

Size	\mathbf{R}_{1}		PN	H		L	Z	E
gms	Code							
$3 / 8$	$3 / 4$	16	40	11	17	33	22	02203101
$1 / 2$	1	16	46	15	16	41	35	02203102
$3 / 4$	$1^{11 / 4}$	16	51	16	18	50	65	02203103
1	$1^{1 / 2}$	16	57	19	19	58	85	02203104
$1^{1 / 4}$	2	16	65	21	22	72	145	02203105
$1^{1 / 2}$	$2^{1 / 4}$	16	65	21	22	79	180	02203106
2	$2^{3 / 4}$	16	78	26	27	98	325	02203107

C	O-Ring dia	T
3062	15.54	2.62
4081	20.22	3.53
4112	28.17	3.53
4131	32.93	3.53
6162	40.65	5.34
6187	47.00	5.34
6237	59.69	5.34

Flanges stub serrated

Size	PN			L		Z	Sp	E
F	gms	Code						
$1 / 2$	15	19	3	6	27	34	10	02135102
$3 / 4$	15	22	3	7	33	41	14	02135103
1	15	25	3	7	41	50	33	02135104
$11 / 4$	15	29	3	8	50	61	37	02135105
$11 / 2$	15	34	3	8	61	73	60	02135106
2	15	38	3	9	76	90	110	02135107
$21 / 2$	15	44	3	10	90	106	165	12135312
3	15	51	5	11	108	125	270	02135109
4	15	61	5	12	131	150	445	02135110
6	12	86	5	16	188	212	1250	02135112
8	9	115	9	20	250	270	2150	02135113
10	6	147	8	29	308	326	3450	02135114
12	6	169	9	33	362	378	5060	02135115

Drilled to BS10:1962 - Table E

Size	PN	E	a	L	Z	No. Holes	$\begin{aligned} & \text { Hole } \\ & \text { Dia.(f) } \end{aligned}$	Sp	Weigh gms	Code
1/2	15	95	67	17	4	4	14	11	100	02130102
3/4	15	105	73	195	4	4	14	12	140	02130103
1	15	115	83	23	4	4	14	14	200	02130104
$1{ }^{1 / 4}$	15	125	88	27	5	4	14	15	265	02130105
$11 / 2$	15	140	99	31	5	4	14	16	350	02130106
2	15	165	115	38	6	4	18	18	500	02130107
$21 / 2$	15	180	127	44	5	4	18	19	670	02130108
3	15	200	146	51	8	4	18	21	860	02130109
*4	15	220	178	63	6	8	18	23	1100	02130110

Drilled to BS4504: Table 10/3 and Table 16/3

Size	PN	E	a	L	Z	No. Holes	Hole Dia.	Sp	Weight gms	Code
$1 / 2$	15	95	65	20	5	4	14	11	70	02319102
3/4	15	105	75	24	5	4	14	12	105	02319103
1	15	115	85	27	5	4	14	14	148	02319104
11/4	15	142	100	31	5	4	18	15	225	02319105
$11 / 2$	15	152	110	36	5	4	18	16	285	02319106
2	15	165	125	43	5	4	18	18	420	02319107
3	15	200	160	58	7	8	18	20	735	02319109
4	15	220	180	69	8	8	18	22	930	02319110

Galvanised Backing Rings are not required on FIP moulded full face flanges.

Flanges blanking Plain/drilled

Drilled to BS10:1962 - Table E

Size	PN	A	B	P.C.D.	No. Holes	Hole Dia.	gms	Code
1/2	15	95	11	67	4	14	99	02313102
3/4	15	105	12	73	4	14	106	02313103
1	15	115	14	83	4	14	206	02313104
$11 / 2$	15	150	16	98	4	14	327	02313106
2	15	165	13	115	4	18	300	02313107
3	15	197	19	145	4	18	690	02313109
4	15	214	19	178	8	18	950	02313110
6	15	286	26	235	8	22	2100	02313112

Drilled to BS4504:Table 16/3 \& 10/3 (1/2" to 6")

Size	PN	A	B	P.C.D.	No. Holes	Hole Dia.	gms	Code
1/2	15	95	11	65	4	14	99	02323102
3/4	15	105	12	75	4	14	106	02323103
1	15	115	14	85	4	14	206	02323104
$11 / 2$	15	150	16	110	4	18	327	02323106
2	15	165	13	125	4	18	300	02323107
3	15	197	19	160	8	18	690	02323109
4	15	214	19	180	8	18	950	02323110
6	15	286	26	240	8	22	2100	02323112

Undrilled

Size		PN	A	B	gms
$1 / 2$	15	95	13	120	02131102
$3 / 4$	15	105	13	145	02131103
1	15	116	13	160	02131104
$11 / 2$	15	150	13	250	02131106
2	15	165	13	300	02131107
3	15	197	20	690	02131109
4	15	214	19	950	02131110
6	15	286	26	2100	02131112
8	12	337	26	3020	02131113

Backing rings Galvanised mild steel drilled

Drilled to BS10:1962 - Table E

Size	A	B	C	P	L	No. 0 Holes	Bolt Size	Weight gms	Code
1/2	96	6	29	68	16	4	M12 $\times 50$	320	13416102
3/4	104	7	34	73	14	4	M12×50	340	13416103
1	114	7	42	84	14	4	M12×50	430	13416104
11/4	121	7	51	87	14	4	M12×50	430	13416105
$11 / 2$	134	8	62	98	14	4	M12×50	520	13416106
2	152	8	78	114	18	4	M16x65	900	13416107
3	184	10	110	145	18	4	M16x70	1130	13416109
*4	216	8	133	178	18	8	M16x80	1480	13416110
6	279	10	196	235	22	8	M20x90	2660	13416112
8	337	15	250	292	22	8	M20x100	3100	13416113
10	406	20	308	356	22	12	M20x130	7050	13416114

*4" BS10 Table D has 4 holes and should be ordered as 13415 110. The bore of the 10" backing rings is machined to mate with the taper of the stub flanges.

Backing rings Galvanised mild steel drilled
Drilled to DIN8063 (BS4504) PN10/PN16

Size	A	B	C	P	L	No. Holes	Weight gms	Code
1/2" -20 mm	95	6	28	65	14	4	330	13421306
$3 / 4{ }^{\text {" }}$ - 25 mm	105	6	34	75	14	4	380	13421307
1"-32mm	115	6	42	85	14	4	440	13421308
11/4" -40 mm	140	6	51	100	18	4	660	13421309
11/2" -50 mm	150	6	62	110	18	4	730	13421310
2'-63mm	165	8	78	125	18	4	1100	13421311
212" -75 mm	185	8	92	145	18	4	1340	13421312
3"-90mm	200	8	110	160	18	8	1500	13421313
4"-110mm	220	8	133	180	18	8	1630	13421314
125 mm	250	8	150	210	18	8	2090	13421315
5"-140mm	250	10	167	210	18	8	2290	13421316
6" - 160mm	285	10	190	240	22	8	3050	13421317

Drilled to DIN 8063 (BS4504) PN10

Size	A	B	c	P	L	No. Holes	Weight gms	Code
200mm*	340	10	235	295	22	8	3200	13421318
8"-225mm**	340	12	250	295	22	8	3000	13421319
250 mm	395	20	274	350	22	12	9900	13421320
10"-280mm	395	16	303	355	26	12	9900	13421321
12"-315mm	445	20	355	400	22	12	9300	13421323

Drilled to DIN8063 (BS4504) PN16

Size	A	B	C	P	L	No. Holes	Weight gms	Code
200mm*	340	11	235	295	22	12	3200	13420318
8" - $225 \mathrm{mm**}$	340	11	249	295	22	12	3000	13420319
250 mm	405	20	278	355	26	12	9900	13420320
10" - 280mm	395	20	303	350	22	12	9900	13420321
12"-315mm	460	20	355	410	26	12	9300	13420323

*The 200 mm (NW175) stub flange supplied by Durapipe UK when used in conjunction with backing ring; code number 421318 and 420318 has a bolt circle diameter which matches 225 mm (NW200) valves and fittings (295 mm).
**Not for use with FK Butterfly valve, use 8 hole backing ring code 04996131.

Drilled to ANSI Class 150

Size	A	B	C	P	L	No. Holes	Weight gms	Code
1/2" -20 mm	90	8	28	61	16	4	350	13448306
$3 / 4$ " -25 mm	100	8	34	70	16	4	390	13448307
1" -32 mm	110	9	42	79	16	4	470	13448308
11/4" -40 mm	118	8	51	90	16	4	590	13448309
11/2" - 50 mm	129	8	62	99	16	4	650	13448310
2" -63 mm	154	10	78	121	19	4	1133	13448311
3" -90 mm	192	11	110	153	19	4	1570	13448313
4" - 110mm	230	11	133	190	19	8	2310	13448314

Backing rings Pre-drilled - Manufactured from PVC-U

d	PN	E	d_{1}	a	Sp	f	U	b	gms	Code
20	10	96	28	65	11	14	4	M 12×70	60	33180306
25	10	107	34	75	12	14	4	M 12x70	85	33180307
32	10	117	42	85	14	14	4	M 12×70	120	33180308
40	10	143	51	100	15	18	4	M16x85	190	33180309
50	10	153	62	110	16	18	4	M16x85	225	33180310
63	10	168	78	125	18	18	4	M16x95	280	33180311
75	10	188	92	145	19	18	4	M 16x95	390	33180312
90	10	203	109	160	20	18	8	M16x105	460	33180313
110	10	222	132	180	22	18	8	M16x105	515	33180314
125	10	230	149	190	24	18	8	M16x115	530	33180315
140	10	251	166	210	26	18	8	M16x120	715	33180316
200	10	340	235	295	30	22	8	M20x140	1210	33180317
225	10	340	252	295	30	22	8	M20x140	1090	33180318
280	10	396	309	350	35	22	12	M20x160	1880	33180320

Gaskets flat Stub flange EPDM

Gaskets full face Drilled EPDM

Drilled to BS10:1962 - Table E

Size	A	B	P.C.D.	No. of Holes	Hole Dia.	Weight gms	Code
$1 / 2$	95	3	67	4	14	31	03410102
3/4	112	3	73	4	14	37	03410103
1	115	3	83	4	14	37	03410104
11/4	121	3	87	4	14	41	03410105
$11 / 2$	133	3	98	4	14	55	03410106
2	153	3	115	4	18	56	03410107
3	184	3	145	4	18	98	03410109
*4	216	3	178	8	18	112	03410110

*4" BS10 Table D has 4 holes and should be ordered as 03409110.
Drilled to BS4504 Table 10/3 and Table 16/3

Size	A	B	P.C.D.	No. of Holes	Hole Dia.	Weight gms	Code
1/2	95	3	65	4	14	31	03408102
3/4	112	3	75	4	14	37	03408103
1	115	3	85	4	14	37	03408104
$11 / 4$	121	3	100	4	18	41	03408105
$11 / 2$	133	3	110	4	18	55	03408106
2	153	3	125	4	18	56	03408107
3	184	3	160	8	18	98	03408109
4	216	3	180	8	18	112	03408110

Valve support plates Galvanised mild steel drilled

Drilled to DIN8063 (BS4504) PN10/PN16

No. Size	B	C	E	L	M	N	No. oles	Weight gms	Code
$1 / 2$ " 20 mm	97	86	49	14	16	2	4	640	31459306
$3 / 4$ " - 25 mm	105	89	76	14	16	2	4	750	31459307
1" -32 mm	114	96	77	14	12	2	4	860	31459308
11/2" -50 mm	150	125	100	14	22	2	4	1480	31459310
2" -63 mm	160	134	100	14	24	2	4	2100	31459311
21/2" -75 mm	185	144	125	14	22	2	4	2500	31459312
3" - 90 mm	203	150	127	14	23	2	8	2660	31459313
4" - 110mm	214	160	150	14	22	3	8	2960	31459314

$\mathrm{N}=$ No. of holes in base.
For details of flange drillings see the corresponding backing ring.

Flange assemblies

PVC Full Face Flange - PN16 Drilling

Size	Description	Code
$1 / 2$	PVC F/F FLG 16/3 KIT $1 / 2$	02359102
$3 / 4$	PVC F/F FLG 16/3 KIT 3/4	02359103
1	PVC F/F FLG 16/3 KIT 1	02359104
$11 / 4$	PVC F/F FLG 16/3 KIT 11/4	02359105
$11 / 2$	PVC F/F FLG 16/3 KIT 11/2	02359106
2	PVC F/F FLG 16/3 KIT 2	02359107
3	PVC F/F FLG 16/3 KIT 3	02359109
4	PVC F/F FLG 16/3 KIT 4	02359110

PVC Full Face Flange - Table E Drilling

Size	Description	Code
$1 / 2$	PVC F/F FLG BS10E KIT $1 / 2$	02362102
$3 / 4$	PVC F/F FLG BS10E KIT $3 / 4$	02362103
1	PVC F/F FLG BS10E KIT 1	02362104
$11 / 4$	PVC F/F FLG BS10E KIT 11/4	02362105
$11 / 2$	PVC F/F FLG BS10E KIT $11 / 2$	02362106
2	PVC F/F FLG BS10E KIT 2	02362107
3	PVC F/F FLG BS10E KIT 3	02362109
4	PVC F/F FLG BS10E KIT 4	02362110

PVC Stub Flange - PN16 Drilling

Size	Description	Code
2	PVC S FLG 16/3 KIT 2	02364107
$21 / 2$	PVC S FLG 16/3 KIT 75	33364312
3	PVC S FLG 16/3 KIT 3	02364109
4	PVC S FLG 16/3 KIT 4	02364110
5	PVC S FLG 16/3 KIT 140	33364316
6	PVC S FLG 16/3 KIT 6	02364112
8	PVC S FLG 16/3 KIT 8	02364113

PVC Stub Flange - ASA150 Drilling

Size	Description	Code
2	PVC S FLG ASA 150 KIT 2	02366107
3	PVC S FLG ASA 150 KIT 3	02366109
4	PVC S FLG ASA 150 KIT 4	02366110
6	PVC S FLG ASA 150 KIT 6	02366112
8	PVC S FLG ASA 150 KIT 8	02366113

PVC Stub Flange - Table E Drilling

Size	Description	Code
2	PVC S FLG BS10E KIT 2	02367107
3	PVC S FLG BS10E KIT 3	02367109
4	PVC S FLG BS10E KIT 4	02367110
6	PVC S FLG BS10E KIT 6	02367112
8	PVC S FLG BS10E KIT 8	02367113

Pre-packed flange assemblies are also available and consist of a PVC flange, galvanised mild steel backing ring and gasket on one code. Ordering these products guaranties a correct fit between the components.

Valves

Premium Quality
Valve for Demanding Enviromments
VKD Double union ball valves Manual - EPDM seals

with BS series plain female ends for solvent welding

d	DN	PN	L	z	H	H1	E	B	B_{1}	C	C_{1}	gms	Code
$1 / 2$	15	16	16	70	103	65	54	54	29	67	40	205	H0 DKE 102
3/4	20	16	19	77	115	70	65	65	35	85	49	335	HO DKE 103
1	25	16	22	83	128	78	73	70	39	85	49	433	H0 DKE 104
$11 / 4$	32	16	26	94	146	88	86	83	46	108	64	703	H0 DKE 105
$11 / 2$	40	16	30	106	164	91	98	89	52	108	64	925	H0 DKE 106
2	50	16	36	127	199	111	122	108	62	134	76	1577	H0 DKE 107

d	DN	PN	z	L	H	H_{1}	E	B	B_{1}	C	C_{1}	gms	Code
21/2	65	16	147	44	235	133	164	164	87	225	175	4380	H0 DKE 312
3	80	16	168	51	270	149	203	177	105	327	272	7200	H0 DKE 109
4	100	16	186	61	308	167	238	195	129	385	330	11141	H0 DKE 110

Options:
EPDM seals (threaded ends) order H0 DKE B**
FPM seals (plain ends) order H0 DKF ***
FPM seals (threaded ends) order H0 DKF B**

TKD 3-way ball valves Plain EPDM

T-Port design

d	DN	PN	H	H_{1}	Z	C	C_{1}	B	B_{1}	L	gms	Code
$1 / 2$	15	16	118	80	85	67	40	54	29	17	310	HO TTE 102
3/4	20	16	145	100	107	85	49	65	35	19	535	HO TTE 103
1	25	16	160	110	115	85	49	69	39	22	725	HO TTE 104
$11 / 4$	32	16	189	131	137	108	64	83	46	26	1170	HO TTE 105
$11 / 2$	40	16	219	148	159	108	64	89	52	31	1600	HO TTE 106
2	50	16	267	179	194	134	76	108	62	37	2845	HO TTE 107

Options:
EPDM seals (threaded ends) order H0 TTE $\mathrm{B}^{* *}$
FPM seals (plain ends) order H0 TTF ${ }^{* * *}$
FPM seals (threaded ends) order H0 TTF $\mathrm{B}^{* *}$
Manual valves can be supplied with locking kits - further information is available from our Valve Department.

L-Port design

d	DN	PN	H	H_{1}	Z	C	C_{1}	B	B_{1}	L	gms	Code
1/2	15	16	118	80	85	67	40	54	29	17	310	HO LTE 102
3/4	20	16	145	100	107	85	49	65	35	19	535	HO LTE 103
1	25	16	160	110	115	85	49	69	39	22	725	HO LTE 104
11/4	32	16	189	131	137	108	64	83	46	26	1170	HO LTE 105
$11 / 2$	40	16	219	148	159	108	64	89	52	31	1600	HO LTE 106
2	50	16	267	179	194	134	76	108	62	37	2845	HO LTE 107

Options:
EPDM seals (threaded ends) order H0 LTE B**
FPM seals (plain ends) order H0 LTB ***
FDM seals (threaded ends) order H0 LTF $\mathrm{B}^{* *}$
VKD and TKD ball valves can be supplied electrically or pneumatically actuated.

VXE Double union ball valves Manual - EPDM seals

with BS series plain female ends for solvent welding

d	DN	PN	L	Z	H	E	B	C	C_{1}	gms	Code
$1 / 2$	15	16	15	60	90	54	49	64	20	175	H0 XEE 102
3/4	20	16	16	60	93	63	62	78	23	260	H0 XEE 103
1	25	16	19	72	110	72	71	87	27	365	H0 XEE 104
$1_{1 / 4}$	32	16	21	84	127	85	82	102	30	565	H0 XEE 105
$1^{1 / 2}$	40	16	21	88	131	100	92	109	33	795	H0 XEE 106
2	50	16	26	110	161	118	110	133	39	1325	H0 XEE 107

d	DN	PN	L	Z	H	E	B	C	C_{1}	gms	Code
$2^{1 / 2}$	65	10	44	128	216	154	133	222	-	2600	H0 XEE 312
3	80	10	51	142	244	189	154	270	-	4330	H0 XEE 109
4	100	6	63	183	309	221	175	270	-	7450	H0 XEE 110

SXE Easyfit ball check valves Plain ends - EPDM seals (other options available)

d	DN	PN	L	Z	H	E	gms	Code
$1 / 2$	15	16	16.5	49	82	54	148	H0 SXE 102
$3 / 4$	20	16	19	53	91	63	190	H0 SXE 103
1	25	16	22.5	58	103	72	300	H0 SXE 104
$1{ }^{1} / 4$	32	16	26	68	120	85	460	H0 SXE 105
$11 / 2$	40	16	30	79	139	100	675	H0 SXE 106
2	50	16	36	102	174	118	1080	H0 SXE 107

Options:
EPDM seals (threaded ends) order H0 SXE B**
FPM seals (plain ends) order H0 SXF ***
FPM seals (threaded ends) order H0 SXF B**

| d | DN | PN | L | Z | H | E | gms | EPDM Code |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{1 / 2}$ | 65 | 16 | 44 | 123 | 211 | 157 | 2605 | H0 SXE 312 |
| 3 | 80 | 16 | 51 | 146 | 248 | 174 | 3300 | H0 SXE 109 |
| 4 | 100 | 16 | 63 | 157 | 283 | 212 | 5570 | H0 SXE 110 |

SXA Easyfit air release valves Plain ends - EPDM seals (other options available)

d	DN	PN	L	Z	H	E	gms	Code
$1 / 2$	15	16	16.5	50	82	54	148	H0 SAE 102
$3 / 4$	20	16	19	53	91	63	190	H0 SAE 103
1	25	16	22.5	59	103	72	300	H0 SAE 104
$11 / 4$	32	16	26	68	120	85	460	H0 SAE 105
$11 / 2$	40	16	30	77	139	100	675	H0 SAE 106
2	50	16	36	98	174	118	1080	HO SAE 107

Options:
EPDM seals (threaded ends) order H0 SAE B**
FPM seals (plain ends) order HO SAF ${ }^{* * *}$
FPM seals (threaded ends) order HO SAF B**

Note: this valve must be installed at a minimum distance of $10 \times$ nominal diameter (eg. 20" for size 2 ") from pump flange.

RV Y-Type strainers Socket union ends - EPDM seals

Grey (HO UV****) or Transparent (H0 UT* ***)
with BS series plain female ends for solvent welding

d	DN	PN		A	B	E	L	Z	H	K	gms	Code
Grey Trans. max												
$1 / 2$	15	15	15	125	72	55	16	103	135	-	211	H0 UVE 102
$3 / 4$	20	15	15	145	84	66	19	120	158	-	358	H0 UVE 103
1	25	15	15	165	95	75	22	132	176	-	526	H0 UVE 104
$11 / 4$	32	15	10	190	111	87	26	155	207	-	733	H0 UVE 105
$11 / 2$	40	15	10	210	120	100	31	181	243	-	1095	H0 UVE 106
2	50	15	10	240	139	120	38	222	298	-	1843	H0 UVE 107

Options:
EPDM seals (threaded ends) order H0 UVE B**
FPM seals (plain ends) order HO UVF ***
FPM seals (threaded ends) order H0 UVF B**

VM Diaphragm valves Manual - plain union ends EPDM diaphragm

BS series plain female ends

d	D	PN	B	B_{1}	H	h	H_{1}	$\mathrm{L}_{\text {A }}$	J	E	R_{1}	gms	Code
$1 / 2$	15	10	95	20	146	12	90	108	M6	41	1	830	H0 UME 102
3/4	20	10	95	20	152	12	90	108	M6	50	11/4	860	HO UME 103
1	25	10	95	26	166	12	90	116	M6	122	$11 / 2$	895	H0 UME 104
11/4	32	10	126	36	192	16	115	134	M8	140	2	1650	H0 UME 105
$11 / 2$	40	10	126	40	222	16	115	154	M8	160	21/4	1730	HO UME 106
2	50	10	148	49	266	16	140	184	M8	190	23/4	2800	H0 UME 107
21/2	65	10**	225	55	284	23	200		M12	-	-	7000	H0 VME 412
3	80	10**	225	55	300	23	200	-	M12	-	-	7000	H0 VME 209
4	100	10**	295	69	300	23	200	-	M12	-	-	. 0500	H0 VME 210

*2½", 3" \& 4" are all spigot-ended products.
** PN6 for PTFE diaphragm.
Options:
FPM diaphragm (plain ends) order H0 UMF ***
PTFE diaphragm (plain ends) order H0 UMG ***

FK Butterfly valves EPDM seals

d	DN	PN	B_{2}	B_{3}	C	C_{1}	gms	U	Code
$11 / 2$	40	16	60	137	175	100	900	4	H0 FKE 106
2	50	16	70	143	175	100	1080	4	H0 FKE 107
21/2	65	10	80	164	272	110	1470	4	H0 FKE 108
3	80	10	93	178	272	110	1870	8	H0 FKE 109
4	100	10	107	192	272	110	2220	8	H0 FKE 110
5	125	10	120	212	330	110	3100	8	H0 FKE 111
6	150	10	134	225	330	110	3850	8	H0 FKE 112
8	200	10	161	272	420	122	6750	8	H0 FKE 113

Sizes 6" to 12 " are available with gearbox operation.
10 " and 12 " are available, these are dimensionally identical to the $250 \mathrm{~mm} \& 315 \mathrm{~mm}$ products featured on Page 77. Contact 01543272424 for more details.

Options:
FPM seals order H0 FKF ${ }^{* * *}$

VKR Metering ball valve

d	DN	PN	L	z	H	H_{1}	E	B	B_{1}	C	C_{1}	gms	Code
3/8	15	16	16.5	70	103	65	54	54	29	67	40	205	H0 MBE 101
1/2	15	16	16.5	70	103	65	54	54	29	67	40	205	H0 MBE 102
3/4	20	16	19	77	115	70	65	65	34.5	85	49	335	H0 MBE 103
1	25	16	22.5	83	128	78	73	70	39	85	49	433	HO MBE 104
$11 / 4$	32	16	26	94	146	88	86	83	46	108	64	703	H0 MBE 105
11/2	40	16	30	104	164	91	98	89	52	108	64	925	H0 MBE 106
2	50	16	36	127	199	111	122	108	62	134	76	1577	H0 MBE 107

Options:
FPM seals (Plain ends) order HO MBF ${ }^{* * *}$

Set of transparent service plugs and white PVC tag holders

For insertion in handle for (VXE) Easyfit valve customisation

Size mm/inch							Standard pack quantity in units	Product Code
$16-20 / 1 / 2$	20	LCE020						
$25 / 3 / 4$	20	LCE025						
$32 / 1$	20	LCE032						
$40 / 1^{1 / 4}$	20	LCE040						
$50 / 1^{1 / 2}$	20	LCE050						
$63 / 2$	20	LCE063						

Die cut labels plus software White waterproof A4 sheets and freeware editing software to be used with inkjet printers for easyfit valve customisation.

Size mm/inch	No. of sheets	Total labels	Product Code
$16-20 / 1 / 2$	10	500	LSE020
$25 / 3 / 4$	10	500	LSE025
$32 / 1$	10	500	LSE032
$40 / 1^{1} / 4$	10	500	LSE040
$50 / 1^{1} / 2$	10	400	LSE050
$63 / 2$	10	400	LSE060

Actuated Valves and Flow Control

The valves in this catalogue are only a selection of the complete range of thermoplastic valves available.

Durapipe UK offer a comprehensive range of actuated valves with either pneumatic or electric actuators. These are assembled at our in-house actuation department and meet the demands of a wide range of applications found in industrial pipework installations.

To further complement the Durapipe UK valve offering, there is a complete range of Flow Meters, Solenoid Valves and the flow control system FLOW X3/CHEM X3.

For further information on any of these products, please do not hesitate to contact your local Area Sales Manager or our Valves and Flow Control Department on 01543272424.

Accessories

One-step solvent cement

Litres	gms	Code
0.5	500	03462395

Durapipe PVC-U solvent cement must be used for jointing of Durapipe PVC-U pipework systems.

Eco-cleaner

Litres	gms	Code
0.5	500	03457395

Durapipe Eco-cleaner must be used for jointing of Durapipe PVC-U pipework systems.

HCR-36 Chemically resistant PVC cement

5	Description	Code
	1 litre	03468396

Cleaner for use with HCR-36 Chemically resistant PVC cement

Cobra pipe clips Polypropylene

Size	A	B	C	D	G	Bolt/Screw size	gms	Code
3/8	-	35	25	19	16	M.4/3BA/No 8	7	13434305
$1 / 2$	-	35	30	14	16	M.5/1BA/No 10	8	13434306
3/4	-	35	35	16	17	M.5/1BA/No 10	11	13434307
1	-	40	40	17	17	M.5/1BA/No 10	14	13434308
$11 / 4$	75	45	45	20	20	M.5/1BA/No 10	21	13434309
11/2	85	50	50	22	21	M.6/0BA/No 10	30	13434310
2	102	60	60	19	21	M.6/0BA/No 10	42	13434311
21/2	122	70	70	27	31	M. 8	94	13434312
3	148	80	90	39	31	M. 8	121	13434313
4	171	90	96	36	35	M. 8	185	13434314
5	211	156	132	40	40	M. 8	252	13434316
6	243	170	150	40	40	M. 8	185	13434317

Clips $11 / 4$ " and above are fitted with a pipe retaining strap. Bolts/screws not supplied.

Saddle clips Polypropylene

Backing plate shown dotted supplied with 3 " and 4 " only. Bolts/screws not supplied. Bolt holes in $3^{\prime \prime}$ and $4^{\prime \prime}$ clips are not countersunk.

Chamfering and de-burring tools

Description	Code
E $16-63 \mathrm{~mm}$ pipe outer milling cutter tool	FT 556512
$32-160 \mathrm{~mm}$ chamfering tool	FT 550510

Durapipe PVC-U solvent cement must be used for jointing of Durapipe PVC-U pipework systems.

Description	Code
$16-63 \mathrm{~mm}$ pipe cutter	FT 800001
$50-125 \mathrm{~mm}$ pipe cutter	FT 800003
$16-63 \mathrm{~mm}$ spare cutter wheel	FT 800002
$50-125 \mathrm{~mm}$ spare cutter wheel	FT 800004

Index to PVC-U Metric Fittings

Optima Pipe page 58

Elbows 90° page 61

End caps (plain) page 62

Elbows 90° page 65

Pipe (plain) page 58

Tees 45° (plain) page 61

Socket unions page 63

Tees 90° page 66

Hose adaptors spigot end page 67

Flanges full face page 70

Sockets page 59

Tees 90° (equal) page 61

Imperial/metric socket adaptors page 63

Tees 90° equal page 66

Saddle clamps page 68

Backing rings page 70-71

Reducing bushes page 59

Tees 90° (reducing) page 62

Sockets
page 64

Male threaded adaptors page 66

Reducing sockets page 60

Cross
page 62

Reducers page 64/65

Female threaded adaptors page 67

Tank connectors page 68

Gaskets flat page 72

Male composite unions page 69

Valve support plates page 72

Female composite unions page 69

Flange assemblies page 73

Valves

VKD Double union ball valves (manual) page 74

SXA Easyfit air release valves page 75

Transparent service plugs page 77

RV Y-Type strainers page 76

Die cut labels page 77

Accessories

One-step solvent cement page 78

Eco-cleaner page 78

HCR-36 Chemically resistant PVC cement page 78

Cleaner for use with HCR-36 Chemically resistant PVC cement page 78

Pipe cutters
page 78

TKD 3-way valves page 74

VM Diaphragm valves page 76

VXE Easyfit ball valves (manual) page 75

VKR Metering ball valve page 76

SXE Easyfit ball check valves page 75

FK Butterfly valves page 77

Cobra pipe clips page 78

Chamfering and de-burring tools page 78 page 78

PN10

$\begin{gathered} d_{1} \\ \text { Size } \end{gathered}$	t min	kg/m	length m	Code
32	1.6	0.24	5	33556308
40	1.9	0.35	5	33556309
50	2.4	0.55	5	33556310
63	3.0	0.71	5	33556311
75	3.6	1.00	5	33556312
90	4.3	1.44	5	33556313
110	4.2	2.11	5	33556314
125	4.8	2.72	5	33556315
160	6.2	4.49	5	33556317

PN16

d_{1}	t min	kg/m	length m	Code
20	1.5	0.13	5	33557306
25	1.9	0.20	5	33557307
32	2.4	0.34	5	33557308
40	3.0	0.51	5	33557309
50	3.7	0.79	5	33557310
63	4.7	1.25	5	33557311
75	5.6	1.50	5	33557312
90	6.7	2.15	5	33557313
110	6.6	3.20	5	33557314

PVC-U Pipe 16 bar

PN10

$\begin{gathered} d_{1} \\ \text { Size } \end{gathered}$	t min	kg/m	length m	Code
32	1.6	0.24	5	33555308
40	1.9	0.35	5	33555309
50	2.4	0.55	5	33555310
63	3.0	0.71	5	33555311
75	3.6	1.00	5	33555312
90	4.3	1.44	5	33555313
110	4.2	2.11	5	33555314
125	4.8	2.72	5	33555315
140	7.3	4.54	6	06512111
160	6.2	4.49	5	33555317
200	7.7	6.98	5	33555318
250	9.6	10.87	5	33555320
315	12.1	17.5	5	33555323

PN16

$\mathbf{d}_{\mathbf{1}}$ Size	t min	kg/m	length \mathbf{m}	Code
20	1.5	0.13	5	33560306
25	1.9	0.20	5	33560307
32	2.4	0.34	5	33560308
40	3.0	0.51	5	33560309
50	3.7	0.79	5	33560310
63	4.7	1.25	5	33560311
75	5.6	1.50	5	33560312
90	6.7	2.15	5	33560313
110	6.6	3.20	5	33560314

Sockets Plain

Size	PN	A	B	\mathbf{Z}_{1}	gms	Code
16	16	21	31	3	7	33100305
20	16	26	35	3	11	33100306
25	16	32	41	2	20	33100307
32	16	40	47	3	30	33100308
40	16	50	55	3	55	33100309
50	16	61	65	3	90	33100310
63	16	76	79	3	160	33100311
75	16	90	91	3	250	33100312
90	16	108	106	4	415	33100313
110	16	131	130	8	715	33100314
125	16	145	145	7	960	33100315
140	16	164	160	8	1240	33100316
160	16	186	181	9	1680	33100317
200	16	232	223	11	3050	33100318
225	16	260	249	11	4600	33100319
250	10	286	272	10	5760	33100320
315	10	355	339	11	9780	33100323

Reducing bushes Plain

Fig. B

Fig. A

Size	PN	B	Z_{1}	Fig	gms	Code
20×16	16	18	2	A	3	33109412
25×20	16	22	3	A	5	33109415
32×20	16	28	6	A	15	33109418
32×25	16	26	4	A	10	33109419
40×20	16	35	9	B	25	33109421
40×25	16	33	7	B	24	33109422
40×32	16	30	4	A	17	33109423
50×25	16	33	13	B	29	33109425
50×32	16	40	9	B	35	33109426
50×40	16	36	5	A	32	33109427
63×32	16	38	16	B	73	33109430
63×40	16	38	12	B	75	33109431
63×50	16	38	7	A	65	33109432
75×50	16	44	13	B	120	33109437
75×63	16	44	6	A	85	33109438
90×50	16	51	20	B	200	33109442
90×63	16	51	13	B	210	33109443
90×75	16	51	7	A	150	33109444
110×63	16	61	23	B	340	33109449
110×75	16	61	17	B	360	33109450
110×90	16	61	9	A	270	33109451
125×110	16	69	8	A	285	33109459
140×90	16	76	25	B	730	33109465
140×110	16	76	17	A	645	33109466
140×125	16	76	10	A	350	33109467
160×90	16	86	35	B	1040	33109473
160×110	16	86	24	B	945	33109474
160×140	16	86	10	A	565	33109476
200×160	16	110	21	B	109	33109487
225×160	16	119	33	B	1840	33109495
225×200	16	119	13	A	1380	33109496
250×160	10	132	45	B	4250	33109497
250×200	10	132	25	A	3820	33109498
250×225	10	132	12	A	2230	33109499
315×200	10	165	58	B	8650	33109501
315×225	10	165	45	B	8100	33109502
315×250	10	165	33	B	5080	33109503

$\begin{gathered} \text { Size } \\ d_{3} \times d_{2} \times d_{1} \end{gathered}$	PN	B	Z_{1}	gms	Code
20×16	16	35	5	8	33114305
$25 \times 20 \times 16$	16	39	9	9	33114412
$25 \times 20 \times 20$	16	41	9	12	33114306
$32 \times 25 \times 20$	16	46	11	16	33114415
$32 \times 25 \times 25$	16	49	11	20	33114307
$40 \times 32 \times 20$	16	52	14	23	33114418
$40 \times 32 \times 25$	16	55	14	27	33114419
$40 \times 32 \times 32$	16	58	14	34	33114308
$50 \times 40 \times 20$	16	60	18	36	33114421
$50 \times 40 \times 25$	16	63	18	40	33114422
$50 \times 40 \times 32$	16	66	18	48	33114423
$50 \times 40 \times 40$	16	70	18	55	33114309
$63 \times 50 \times 25$	16	73	23	75	33114425
$63 \times 50 \times 32$	16	76	23	80	33114426
$63 \times 50 \times 40$	16	80	23	90	33114427
$63 \times 50 \times 50$	16	85	23	110	33114310
$75 \times 63 \times 50$	16	93	24	130	33114432
$75 \times 63 \times 63$	16	100	24	175	33114311
$90 \times 75 \times 40$	16	100	30	160	33114436
$90 \times 75 \times 50$	16	105	30	185	33114437
$90 \times 75 \times 63$	16	112	30	225	33114438
$90 \times 75 \times 75$	16	118	30	255	33114312
$110 \times 90 \times 50$	16	119	37	260	33114442
$110 \times 90 \times 63$	16	126	37	300	33114443
$110 \times 90 \times 75$	16	132	37	345	33114444
$110 \times 90 \times 90$	16	139	37	400	33114313
160×110	16	186	-	1270	33114474

Elbows 45° Plain

Size	PN	A	C	$\mathbf{Z}_{\mathbf{1}}$	gms	Code
16	16	21	20	5	6	33119305
20	16	28	22	6	20	33119306
25	16	33	25	6	26	33119307
32	16	41	30	8	45	33119308
40	16	50	37	11	70	33119309
50	16	61	42	12	120	33119310
63	16	76	52	14	200	33119311
75	16	90	61	17	320	33119312
90	16	107	72	22	550	33119313
110	16	130	87	26	915	33119314
125	16	147	100	31	1315	33119315
140	16	163	110	34	1660	33119316
160	16	192	124	38	3060	33119317
200	10	230	156	48	4500	33119318
225	10	260	176	55	6400	33119319
250	10	286	189	58	7700	33119320
280	10	320	208	62	10460	33119321
315	10	359	230	66	15500	33119323

Elbows 90° Plain
GIV

Size	PN	A	C	$\mathbf{Z}_{\mathbf{1}}$	gms	Code
16	16	22	23	9	11	33115305
20	16	26	28	12	15	33115306
25	16	32	34	15	30	33115307
32	16	40	41	19	50	33115308
40	16	50	48	22	90	33115309
50	16	61	59	28	160	33115310
63	16	76	72	34	290	33115311
75	16	91	85	41	450	33115312
90	16	108	99	48	680	33115313
110	16	130	122	61	1180	33115314
125	16	148	133	64	1650	33115315
140	16	163	153	77	2080	33115316
160	16	193	175	89	2980	33115317
200	16	229	206	100	5360	33115318
225	16	258	291	172	8700	33115319
250	10	287	319	188	12480	33115320
280	10	325	357	210	17000	33115321
315	10	359	400	236	23370	33115323

Tees 45° Plain

Size	PN	A	B	C	$\mathbf{Z}_{\mathbf{1}}$	$\mathbf{Z}_{\mathbf{2}}$	$\mathbf{Z}_{\mathbf{3}}$		gms	Code
20	16	28	68	45	7	36	29	40	33418306	
25	16	34	81	55	7	43	36	60	33418307	
32	16	41	97	66	9	53	44	105	33418308	
40	16	50	117	80	11	65	54	175	33418309	
50	16	60	139	96	12	77	65	255	33418310	
63	16	73	170	118	14	94	80	420	33418311	

Tees 90° Equal

Size	PN	A	B	C	D	Z_{1}	gms	Code
$25 \times 25 \times 20$	16	33	66	30	28	14	37	33124415
$32 \times 32 \times 20$	16	41	79	34	28	18	60	33124418
$32 \times 32 \times 25$	16	41	79	37	34	18	65	33124419
$40 \times 40 \times 20$	16	50	96	38	29	22	100	33124421
$40 \times 40 \times 25$	16	50	96	41	34	22	100	33124422
$40 \times 40 \times 32$	16	50	96	44	42	22	105	33124423
$50 \times 50 \times 20$	16	61	116	43	30	27	160	33124424
$50 \times 50 \times 25$	16	61	116	46	35	27	160	33124425
$50 \times 50 \times 32$	16	61	116	49	42	27	165	33124426
$50 \times 50 \times 40$	16	61	116	53	51	27	170	33124427
$63 \times 63 \times 25$	16	76	143	53	36	34	290	33124429
$63 \times 63 \times 32$	16	76	143	56	43	34	295	33124430
$63 \times 63 \times 40$	16	76	143	60	52	34	300	33124431
$63 \times 63 \times 50$	16	76	143	65	62	34	315	33124432

Cross
Bends $\mathbf{9 0}^{\circ}$

Size	$\mathbf{R}_{\mathbf{1}}$	PN	H	L	Z	E	gms	
Code								
16	$3 / 8$	16	41	14	13	33	20	33205305
20	1	16	45	16	13	41	35	33205306
25	$11 / 4$	16	51	19	13	50	60	33205307
32	$11 / 2$	16	57	22	13	58	85	33205308
40	2	16	67	26	15	72	150	33205309
50	$21 / 4$	16	79	31	17	79	175	33205310
63	$23 / 4$	16	98	38	22	98	320	33205311
75	$31 / 2$	10	116	44	21	120	590	33205312
90	4	10	125	51	23	135	770	33205313
110	5	10	145	61	23	163	1300	33205314

EPDM seal as standard.
For FPM seal order by type 204.

C	O-Ring dia			T
3062	15.54	2.62		
4081	20.22	3.53		
4112	28.17	3.53		
4131	32.93	3.53		
6162	40.65	5.34		
6187	47.00	5.34		
6237	59.69	5.34		
6300	75.57	5.34		
6362	91.45	5.34		
6450	113.67	5.34		

Socket unions Plain socketfemale BSP thread

Imperial/metric socket adaptors

d x R	PN	R_{1}	L	L_{1}	H	Z	E	gms	Code
$16 \times 3 / 8$	16	3/4	14	11	41	16	33	22	33202305
$20 \times 1 / 2$	16	1	16	15	45	14	41	35	33202306
$25 \times 3 / 4$	16	$11 / 4$	19	16	51	16	50	62	33202307
32×1	16	$11 / 2$	22	19	57	16	58	85	33202308
$40 \times 11 / 4$	16	2	26	21	67	20	72	45	33202309
$50 \times 11 / 2$	16	21/4	31	21	72	20	79	180	33202310
63×2	16	23/4	38	26	88	24	98	315	33202311
$75 \times 21 / 2$	10	$31 / 2$	44	30	108	34	123	643	33202312
90×3	10	4	51	33	124	40	140	859	33202313
110×4	10	5	61	39	138	38	165	1240	33202314

Size	PN	A		B	\mathbf{Z}_{1}	gms		Code
$* 1 / 2 \times 20$	15	27	35	3	12	33345102		
$* 3 / 4 \times 25$	15	33	41	3	22	33345103		
$* 1 \times 32$	15	41	47	3	44	33345104		
$* 1 / 4 \times 40$	15	50	55	2	65	33345105		
$* 11 / 2 \times 50$	15	61	65	4	125	33345106		
$* 2 \times 63$	15	76	79	5	210	33345107		
$* 3 \times 90$	15	108	107	6	438	33345109		
$* 4 \times 110$	15	131	128	4	852	33345110		
$* 6 \times 160$	15	198	185	7	1700	33345112		

*Sizes shown in inch n.b. designation.

d \times R	PN	L	L_{1}	Z	E	K	gms	Code
$16 \times 3 / 4$	16	14	11	6	24	24	12	33101101
$20 \times 1 / 2$	16	16	15	4	29	29	20	33101102
$25 \times 3 / 4$	16	19	16	5	35	35	30	33101103
32×1	16	22	19	6	43	43	48	33101104
$40 \times 11 / 4$	16	26	21	5	50	50	56	33101105
$50 \times 11 / 2$	16	31	21	8	61	61	102	33101106
63×2	16	38	26	8	76	76	181	33101107
$75 \times 21 / 2$	16	44	30	5	88	95	300	33101108
90×3	16	51	33	16	110	110	470	33101109
110×4	16	61	39	11	131	131	550	33101110

Sockets Plain/female BSP thread with metal reinforcing ring

d x R	PN	L	L_{1}	Z	E	E_{1}	K	gms	Code
$16 \times 3 / 8$	16	14	11	6	24	24	24	14	33103101
$20 \times 1 / 2$	16	16	15	4	29	29	29	23	33103102
$25 \times 3 / 4$	16	19	16	5	35	35	35	34	33103103
32×1	16	22	19	6	43	43	43	53	33103104
$40 \times 11 / 4$	16	26	21	5	50	50	50	62	33103105
$50 \times 11 / 2$	16	31	21	8	61	61	61	110	33103106
63×2	16	38	26	8	76	76	76	190	33103107

Reducers Plain spigot/female BSP thread

dm x df	PN	H	Lm	Lf	L_{1}	E	K	Fig	gms	Code
$20 \times 16 \times 3 / 8$	16	36	16	14	11	28	24	A	11	33169101
$25 \times 20 \times 1 / 2$	16	42	19	16	15	34	29	A	17	33169102
$32 \times 25 \times 3 / 4$	16	49	22	19	16	40	35	A	26	33169103
$40 \times 32 \times 1$	16	57	26	22	19	52	44	A	49	33169104
$50 \times 40 \times 11 / 4$	16	67	31	26	21	59	54	A	66	33169105
$63 \times 50 \times 11 / 2$	16	77	38	31	21	70	64	A	129	33169106
$90 \times 75 \times 21 / 2$	16	84	51	44	30	-	95	B	300	33169107
$110 \times 90 \times 3$	16	100	61	51	33	-	110	B	450	33169108

FIG B

Reducers Plain spigotfemale BSP thread with metal reinforcing ring

DIMV

Elbows 90° Plain socketfemale BSP thread

d x R	PN	L	L_{1}	Z	Z_{1}	E	gms	Code
$16 \times 3 / 8$	16	14	11	10	13	24	16	33116101
$20 \times 1 / 2$	16	16	15	12	13	29	24	33116102
$25 \times 3 / 4$	16	19	16	14	17	35	40	33116103
33×1	16	22	19	18	21	43	72	33116104
$40 \times 11^{1 / 4}$	16	26	21	23	27	54	125	33116105
$50 \times 11 / 2$	16	31	21	27	37	61	175	33116106
63×2	16	38	26	33	46	76	320	33116107
$75 \times 2^{1 / 2}$	16	44	30	41	55	91	465	33116108
90×3	16	51	33	48	66	108	795	33116109
110×4	16	61	39	60	80	131	1130	33116110

Elbows 90° Plain socket/female BSP thread with metal reinforcing ring

GIMV

dx R	PN	L	L_{1}	z	Z_{1}	E	E_{1}	gms	Code
$16 \times 3 / 8$	16	14	11	10	13	24	25	16	33178101
$20 \times 1 / 2$	16	16	15	12	13	29	30	24	33178102
$25 \times 3 / 4$	16	19	16	14	17	35	36	40	33178103
32×1	16	22	19	18	21	43	44	72	33178104
$40 \times 11 / 4$	16	26	21	23	27	5	55	125	33178105
$50 \times 11 / 2$	16	31	21	27	37	61	62	175	33178106
63×2	16	38	26	33	46	76	77	320	33178107

d \times R	PN	L	L_{1}	Z	Z_{1}	E	gms	Code
$16 \times 3 / 8$	16	14	11	9	11	24	20	33146602
$20 \times 1 / 2$	16	16	15	12	13	29	32	33146605
$25 \times 3 / 4$	16	19	16	15	17	35	52	33146608
$32 \times 1 / 2$	16	22	15	18	18	41	92	33146610
32×1	16	22	19	18	21	43	71	33146612
$40 \times 11 / 4$	16	26	21	22	27	50	110	33146616
$50 \times 1 / 2$	16	31	15	27	28	61	160	33146618
$50 \times 11 / 2$	16	31	21	27	37	61	195	33146622
$63 \times 1 / 2$	16	38	15	34	38	76	305	33146624
63×2	16	38	26	34	46	76	405	33146629
$75 \times 21 / 2$	16	44	30	41	55	91	605	33146636
90×3	16	51	33	49	66	109	1070	33146644
110×4	16	61	39	62	83	133	1690	33146652

Tees 90° equal Plain sockets/female BSP threaded with metal reinforcing ring

d x R	PN	L	L_{1}	Z	Z_{1}	E	E_{1}	gms	Code
$16 \times 3 / 8$	16	14	11	9	11	24	25	24	33123101
$20 \times 1 / 2$	16	16	15	12	13	29	29	38	33123605
$25 \times 3 / 4$	16	19	16	15	17	35	36	60	33123608
32×1	16	22	19	18	21	43	44	105	33123612
$40 \times 11 / 4$	16	26	21	22	27	50	51	125	33123616
$50 \times 11 / 2$	16	31	21	27	37	61	62	210	33123622
63×2	16	38	26	34	46	76	77	415	33123629

Male threaded adaptors BSP male thread

$$	PN	A	B	D	Z_{1}	Weigh gms	Code
$16 \times 12 \times 3 / 8$	16	18	$33^{1 / 2}$	11	21	4	33151331
$20 \times 16 \times 3 / 8$	16	22	34	11	20	6	33151332
$20 \times 16 \times 1 / 2$	16	22	38	15	24	10	33151333
$25 \times 20 \times 1 / 2$	16	28	41	15	25	12	33151334
$25 \times 20 \times 3 / 4$	16	30	48	16	31	19	33151335
$32 \times 25 \times 1 / 2$	16	34	45	15	26	15	33151352
$32 \times 25 \times 3 / 4$	16	36	52	16	33	30	33151336
$32 \times 25 \times 1$	16	36	55	19	36	32	33151337
$40 \times 32 \times 3 / 4$	16	42	50	15	28	28	33151353
$40 \times 32 \times 1$	16	42	53	19	31	34	33151338
$40 \times 32 \times 11 / 4$	16	46	60	21	37	50	33151339
$50 \times 40 \times 1$	16	52	58	19	32	50	33151354
$50 \times 40 \times 11 / 4$	16	52	61	21	35	60	33151340
$50 \times 40 \times 11 / 2$	16	52	61	21	35	70	33151341
$63 \times 50 \times 11 / 4$	16	65	68	21	37	95	33151355
$63 \times 50 \times 11 / 2$	16	65	66	21	35	105	33151342
$63 \times 50 \times 2$	16	65	71	26	40	150	33151343
$63 \times 75 \times 11 / 2$	16	75	76	21	38	125	33151356
$75 \times 63 \times 2$	16	75	79	26	41	145	33151345
$90 \times 75 \times 2$	16	95	93	26	49	275	33151346
$90 \times 75 \times 21 / 2$	16	95	98	30	54	280	33151347
$90 \times 75 \times 3$	16	95	100	34	56	300	33151357
$110 \times 90 \times 3$	16	110	113	34	62	390	33151348
$90 \times 110 \times 4$	16	128	128	39	77	420	33151358
$125 \times 110 \times 4$	16	128	126	39	65	500	33151349

*Thread size designation.

Female threaded adaptors BSP female thread reinforced

$\begin{gathered} \text { Size } \\ \text { d2 } \mathrm{x} \mathrm{d1} \mathrm{x} \mathrm{Tx} \end{gathered}$	PN	H	L_{m}	L_{f}	L_{1}	K	gms	Code
$20 \times 16 \times 1 / 2$	16	39	16	14	15	30	18	33153333
$25 \times 20 \times 3 / 4$	16	45	16	16	16.3	36	28	33153335
$32 \times 25 \times 1$	16	51	22	19	19.1	46	49	33153337
$40 \times 32 \times 11 / 4$	16	62	26	22	21.4	54	74	33153339
$50 \times 40 \times 11 / 2$	16	77	31	26	21.4	65	127	33153341
$63 \times 50 \times 2$	16	86	38	31	25.7	80	190	33153343
$75 \times 63 \times 21 / 2$	16	99	44	38	30.2	95	280	33153108
$90 \times 75 \times 3$	16	114	51	44	33.3	110	470	33153109
$110 \times 90 \times 4$	16	134	61	51	39.3	130	670	33153110

Hose adaptors BSP male thread
AFV

Hose adaptors BSP female thread - loose nut with EPDM gasket ADV

Size	PN	L	H	gms	Code
$* 1 / 2 \times 12 \times 14$	16	14	56	15	02156601
*3/4 $\times 16 \times 18$	16	12	60	24	02156603
*1 $\times 20 \times 22$	16	11	67	35	02156606
* $11 / 4 \times 25 \times 27$	16	14	81	55	02156609
* $11 / 2 \times 30 \times 32$	16	16	97	80	02156613
*2 $\times 40 \times 42$	16	18	104	140	02156616
* $21 / 4 \times 50 \times 52$	16	18	111	200	02156623
*21/2 $\times 60 \times 64$	16	19	123	290	02156312
*23/4 $\times 60 \times 64$	16	20	123	300	02156630

*Thread size designation.
Hose adaptors Spigot end

Size $\mathbf{d \times P} \mathbf{P}_{\mathbf{2}} \times \mathbf{P}_{\mathbf{1}}$	PN	L	H	gms	Code
$12 \times 14 \times 12$	16	12	56	6	33158304
$16 \times 18 \times 16$	16	14	60	12	33158305
$20 \times 22 \times 20$	16	16	67	17	33158306
$25 \times 27 \times 25$	16	19	81	26	33158307
$32 \times 32 \times 30$	16	22	97	40	33158308
$40 \times 42 \times 40$	16	26	104	78	33158309
$50 \times 52 \times 50$	16	31	111	113	33158310
$63 \times 64 \times 60$	16	38	123	170	33158311

Note: Saddle clamps are fitted with NBR gaskets so are only suitable for water applications. For more information contact our technical support team.

$\begin{gathered} \mathrm{d}(\mathrm{~mm}) \\ \times \mathrm{R}(\text { inch }) \end{gathered}$	PN	d_{1}	L	E	H	Z	Weight gms	Code
$32 \times 1 / 2$	16	18	18	82	68	28	228	33436201
$32 \times 3 / 4$	16	22	19	82	68	28	242	33436202
$40 \times 3 / 4$	16	22	19	94	78	33	339	33436204
40×1	16	25	22	94	78	33	348	33436205
$50 \times 1 / 2$	16	18	18	104	80	38	328	33436206
$50 \times 3 / 4$	16	22	19	104	80	38	342	33436207
50×1	16	28	22	104	80	38	379	33436208
$63 \times 1 / 2$	16	18	18	116	105	48	562	33436209
$63 \times 3 / 4$	16	22	19	116	105	48	571	33436210
63×1	16	28	22	116	105	48	582	33436211
$63 \times 11 / 2$	16	30	25	116	105	48	615	33436212
$75 \times 3 / 4$	16	22	19	134	105	54	683	33436213
75×1	16	30	22	134	105	54	692	33436214
$90 \times 3 / 4$	16	22	19	152	105	61	764	33436216
90×1	16	28	22	152	105	61	778	33436217
$90 \times 11 / 2$	16	40	25	152	105	61	805	33436219
90×2	16	40	30	152	105	61	877	33436220
$110 \times 3 / 4$	16	22	19	176	105	72	982	33436221
110×1	16	28	22	176	105	72	993	33436222
$110 \times 11 / 2$	16	40	25	176	105	72	1017	33436224
110×2	16	40	30	176	105	72	1081	33436225
125×1	16	25	22	190	112	80	1260	33436226
$125 \times 11 / 2$	16	40	25	190	112	80	1319	33436228
125×2	16	50	30	190	112	80	1412	33436229
140×1	16	25	22	214	114	87	1471	33436230
$140 \times 11 / 2$	16	40	25	214	114	87	1526	33436232
140×2	16	50	30	214	114	87	1607	33436233
160×1	16	28	22	238	120	98	1453	33436234
$160 \times 11 / 2$	16	40	25	238	120	98	1481	33436236
160×2	16	50	30	238	120	98	1523	33436237
200×2	16	52	30	300	133	118	2119	33436238
$225 \times 11 / 2$	16	40	25	333	125	132	2610	33436239
225×2	16	50	30	333	125	132	2650	33436240
225×3	16	74	36	333	125	132	2735	33436241

Tank connectors

Size	PN		$\mathbf{L}_{\mathbf{1}}$	Z	L	H	K
Code							
16	16	10.5	34	14	58.5	33	33217305
20	16	13.5	35.5	16	65	41	33217306
25	16	15	38.5	19	72.5	50	33217307
32	16	17.5	40.5	22	80	58	33217308
40	16	19.5	45.5	26	91	72	33217309
50	16	19.5	50.5	31	101	79	33217310
63	16	24	60.5	38	122.5	98	33217311

Fitted with brass retaining nut and EPDM rubber seal.
Stainless steel options also available on request.

Female composite unions PVC-U/Brass, BSP parallel female thread

Size	PN		$\mathbf{L}_{\mathbf{1}}$	Z		L	H
K	Code						
16	16	13.5	14	14	42.5	20	33216305
20	16	16.5	16	16	48.5	25	33216306
25	16	18.5	17	19	54.5	32	33216307
32	16	19.5	18	22	59.5	38	33216308
40	16	21.5	21	26	68.5	48	33216309
50	16	23	24.5	31	84.5	55	33216310
63	16	27	29.5	38	94.5	69	33216311

Fitted with brass retaining nut and EPDM rubber seal.
Stainless steel options also available on request.

Flanges stub serrated

d	PN	L	z	Sp	E	F	gms	Code
*20	16	19	3	7	33	41	16	33135306
*25	16	22	3	7	41	50	25	33135307
*32	16	26	3	8	50	61	40	33135308
40	16	26	3	8	50	61	40	33135309
50	16	31	3	8	61	73	62	33135310
63	16	38	3	9	76	90	105	33135311
75	16	44	3	10	90	105	160	33135312
90	16	51	5	10	108	125	275	33135313
110	16	61	4	12	131	150	445	33135314
125	16	69	5	13	147	168	750	33135315
140	16	76	5	14	165	188	790	33135316
160	16	86	4.5	16	188	212	1140	33135317
200	16	106	5.5	18	230	254	1840	33135318
225	16	109	5.5	25	245	273	1750	33135319
250	16	131	8.5	20	270	306	2140	33135320
280	10	147	14.5	32	307	327	3650	33135321
315	10	165	16	32	346	377	4950	33135323

*Flat Faced
*The 200 mm (NW 175) stub flange supplied by Durapipe UK when used in conjunction with backing ring; code number 421318 and 420318 has a bolt circle diameter which matches 225 mm (NW200) valves and fittings (295 mm)

Drilled to DIN2501 (BS4504) PN10

Size	PN	A	B	D	Z_{1}	gms	Code
32	10	115	27	14	5	150	33319308
40	10	140	31	15	5	230	33319309
50	10	150	36	16	5	280	33319310
63	10	163	43	18	5	390	33319311
75	10	185	49	19	5	525	33319312
90	10	200	58	20	7	710	33319313
110	10	220	69	22	8	955	33319314

Flanges blanking Plain/drilled

Drilled to BS4504:Table $16 / 3 \& 10 / 3$ (20 to 160 mm)

Size	PN	A	B	P.C.D.	No. Holes	Hole Dia.	gms	Code
20	15	95	11	65	4	14	99	02323102
25	15	105	12	75	4	14	106	02323103
32	15	115	14	85	4	14	206	02323104
40	15	150	16	110	4	18	327	02323106
63	15	165	13	125	4	18	300	02323107
90	15	197	19	160	8	18	690	02323109
110	15	214	19	180	8	18	950	02323110
160	15	286	26	240	8	22	2100	02323112

Backing rings Galvanised mild steel

Drilled to DIN8063 (BS4504) PN10/PN16

Size	A	B	C	P	L	No. Holes	Weight gms	Code
$1 / 2{ }^{\prime \prime}-20 \mathrm{~mm}$	95	6	28	65	14	4	330	13421306
$3 / 4$ " 25 mm	105	6	34	75	14	4	380	13421307
1" - 32 mm	115	6	42	85	14	4	440	13421308
11/4" -40 mm	140	6	51	100	18	4	660	13421309
11/2" -50 mm	150	6	62	110	18	4	730	13421310
2" -63 mm	165	8	78	125	18	4	1100	13421311
21/2" -75 mm	185	8	92	145	18	4	1340	13421312
3" -90 mm	200	8	110	160	18	8	1500	13421313
4" - 110mm	220	8	133	180	18	8	1630	13421314
125 mm	250	8	150	210	18	8	2090	13421315
5" - 140mm	250	10	167	210	18	8	2290	13421316
6" - 160mm	285	10	190	240	22	8	3050	13421317

Drilled to DIN8063 (BS4504) PN10

Size	A	B	C	P	L	No. Holes	Weight gms	Code
200mm*	340	10	235	295	22	8	3200	13421318
8" $225 \mathrm{mm**}$	340	12	250	295	22	8	3000	13421319
250 mm	395	20	274	350	22	12	9900	13421320
10"-280mm	395	16	303	350	22	12	9900	13421321
12"-315mm	445	20	355	400	22	12	9300	13421323

Backing rings Galvanised mild steel

Drilled to DIN8063（BS4504）PN16

Size	A	B	C	P	L	No． Holes	Weight gms	Code
200mm＊	340	11	235	295	22	12	3200	13420318
8＂－225mm＊＊	340	11	249	295	22	12	3000	13420319
250 mm	405	20	278	355	26	12	9900	13420320
10＂－280mm	395	20	303	355	26	12	9900	13420321
12＂－315mm	460	20	355	410	26	12	9300	13420323

† Not for use with FK Butterfly valve，use 8 hole backing ring code 04996131.

Drilled to ANSI Class 150

Size	A	B	C	P	L	No． Holes	Weight gms	Code
$1 / 2{ }^{\prime \prime}$－ 20 mm	90	8	28	61	16	4	350	13448306
$3 / 4{ }^{\prime \prime}-25 \mathrm{~mm}$	100	8	34	70	16	4	390	13448307
1＂-32 mm	110	9	42	79	16	4	470	13448308
11／4＂－ 40 mm	118	8	51	90	16	4	590	13448309
11／2＂-50 mm	129	8	62	99	16	4	650	13448310
2＂－63mm	154	10	78	121	19	4	1133	13448311
3＂－90mm	192	11	110	153	19	4	1570	13448313
4＂－110mm	230	11	133	190	19	8	2310	13448314

＊The 200 mm （NW 175）stub flange supplied by Durapipe UK when used in conjunction with backing ring；code number 421318 and 420318 has a bolt circle diameter which matches 225 mm （NW200）valves and fittings（ 295 mm ）．

Backing rings Pre－drilled－Manufactured in PVC－U

Size	PN	E	d_{1}	a	Sp	f	u	b	gms	Code
25	10	107	34	75	12	14	4	M12x70	85	33180307
32	10	117	42	85	14	14	4	M12x70	120	33180308
40	10	143	51	100	15	14	4	M16x85	190	33180309
50	10	153	62	110	16	18	4	M16x85	225	33180310
63	10	168	78	125	18	18	4	16×9	280	33180311
75	10	188	92	145	19	18	8	16×95	390	33180312
90	10	203	09	160	20	18	8	6x105	460	13
110	10	222	132	180	22	18	8	M16x105	515	33180314
125	10	230	149	190	24	18	8	M16x115	30	33180315
140	10	251	166	210	26	18	8	6x120	71	33180316
160	10	290	189	240	29	22	8	20x135	915	33180317
200	10	340	235	295	30	22	8	20×140	1210	33180318
225	10	340	252	295	30	22	8	40	1090	33180319
250	10	396	278	350	34	22	12	20×150	790	33180320
280	10	396	309	350	35	22	12	0x160	1880	33180321
315	10	465	349	400	40	22	12	M20x180	3050	33180322

\author{

- Firstherv.
}

Gaskets flat Stub flange

Size	A	B	Weight gms	EPDM Code
20	34	4	2	13411306
25	41	4	3	13411307
32	50	3	4	13411308
40	60	3	4	13411309
50	72	3	5	13411310
63	90	4	10	13411311
75	106	3	20	13411312
90	125	3	30	13411313
110	150	4	40	13411314
125	166	4	50	13411315
140	180	4	60	13411316
160	205	4	70	13411317
200	253	4	120	13411318
225	274	4	165	13411319
250	306	4	170	13431320
280	330	4	195	13411321
315	379	4	250	13411323

Valve support plates Galvanised mild steel

Drilled to DIN8063 (BS4504) PN10/PN16

No. Size	B	C	E	L	M	N	No. Holes	Weight gms	Code
$1 / 2$ " 20 mm	97	86	49	14	16	2	4	640	31459306
$3 / 4$ " 25 mm	105	89	76	14	16	2	4	750	31459307
1" - 32 mm	114	96	77	14	12	2	4	860	31459308
11/2" - 50 mm	150	125	100	14	22	2	4	1480	31459310
2" -63 mm	160	134	100	14	24	2	4	2100	31459311
21/2" - 75 mm	185	144	125	14	22	2	4	2500	31459312
3" - 90mm	203	150	127	14	23	2	8	2660	31459313
4" - 110mm	214	160	150	14	22	3	8	2960	31459314

$\mathrm{N}=\mathrm{No}$. of holes in base.
For details of flange drillings see the corresponding backing ring.

Flange assemblies

PVC Stub Flange - PN16 Drilling

Size	Description	Code
20	PVC S FLG 16/3 KIT 20	33364306
25	PVC S FLG 16/3 KIT 25	33364307
32	PVC S FLG 16/3 KIT 32	33364308
40	PVC S FLG 16/3 KIT 40	33364309
50	PVC S FLG 16/3 KIT 50	33364310
63	PVC S FLG 16/3 KIT 63	33364311
75	PVC S FLG 16/3 KIT 75	33364312
90	PVC S FLG 16/3 KIT 90	33364313
110	PVC S FLG 16/3 KIT 110	33364314
125	PVC S FLG 16/3 KIT 125	33364315
140	PVC S FLG 16/3 KIT 140	33364316
160	PVC S FLG 16/3 KIT 160	33364317
200	PVC S FLG 16/3 KIT 200	33364318
225	PVC S FLG 16/3 KIT 225	33364319
250	PVC S FLG 16/3 KIT 250	33364320
315	PVC S FLG 16/3 KIT 315	33364323

PVC Stub Flange - PN10 Drilling

Size	Description	Code
200	PVC S FLG 10/3 KIT 200	33365318
225	PVC S FLG 10/3 KIT 225	33365319
250	PVC S FLG 10/3 KIT 250	33365320
315	PVC S FLG 10/3 KIT 315	33365323

PVC Stub Flange - PN16 ASA 150 Drilling

Size	Description	Code
20	PVC S FLG ASA 150 KIT 20	33366306
25	PVC S FLG ASA 150 KIT 25	33366307
32	PVC S FLG ASA 150 KIT 32	33366308
40	PVC S FLG ASA 150 KIT 40	33366309
50	PVC S FLG ASA 150 KIT 50	33366310
63	PVC S FLG ASA 150 KIT 63	33366311
75	PVC S FLG ASA 150 KIT 75	33366312
90	PVC S FLG ASA 150 KIT 90	33366313
110	PVC S FLG ASA 150 KIT 110	33366314
125	PVC S FLG ASA 150 KIT 125	33366315
140	PVC S FLG ASA 150 KIT 140	33366316
160	PVC S FLG ASA 150 KIT 160	33366317
200	PVC S FLG ASA 150 KIT 200	33366318
225	PVC S FLG ASA 150 KIT 225	33366319

Pre-packed flange assemblies are also available and consist of a PVC flange, galvanised mild steel backing ring and gasket on one code. Ordering these products guaranties a correct fit between the components.

VKD Double union ball valves Manual - EPDM seals

with metric series plain female ends for solvent welding

d	DN	PN	L	z	H	H_{1}	E	B	B_{1}	C	C_{1}	gms	Code
16	10	16	14	75	103	65	54	54	29	67	40	195	H0 DKE 305
20	15	16	16	71	103	65	54	54	29	67	40	205	H0 DKE 306
25	20	16	19	77	115	70	65	65	35	85	49	315	H0 DKE 307
32	25	16	22	84	128	78	73	70	39	85	49	435	H0 DKE 308
40	32	16	26	94	146	88	86	83	46	108	64	655	H0 DKE 309
50	40	16	31	102	164	91	98	89	52	108	64	880	H0 DKE 310
63	50	16	38	123	199	111	122	108	62	134	76	1560	H0 DKE 311

d	DN	PN	Z	L	H	${ }_{1}$	E	B	B_{1}	C	${ }_{1}$	gms	Code
75	65	16	147	44	235	133	164	164	87	225	175	4380	H0 DKE 312
90	80	16	168	51	270	149	203	177	105	327	272	7260	H0 DKE 313
110	100	16	182	61	308	167	238	195	129	385	330	11300	H0 DKE 314

Options:
FPM seals (plain ends) order H0 DKF ${ }^{* * *}$
Premium Quality Valve for Demanding Environments
TKD 3-way ball valves Plain EPDM T-Port

T-Port design

d	DN	PN	H	H_{1}	Z	C	C_{1}	B	B_{1}	L	gms	Code
20	15	16	144	80	86	67	40	54	35	16	305	HO TTE 306
25	20	16	145	100	107	85	49	65	35	19	535	HO TTE 307
32	25	16	160	110	116	85	49	70	39	22	725	HO TTE 308
40	32	16	189	131	137	108	64	83	46	26	1170	HO TTE 309
50	40	16	219	148	157	108	64	89	52	31	1600	HO TTE 310
63	50	16	267	179	191	134	76	108	62	38	2845	HO TTE 311

Options:

EPDM seals (threaded ends) order H0 TTE B** FPM seals (plain ends) order H0 TTF ***
FPM seals (threaded ends) order H0 TTF B**

Manual valves can be supplied with locking kits - further information is available from our Valve Department.

L-Port design

d	DN	PN	H	H_{1}	Z	C	C_{1}	B	B_{1}	L	gms	Code
20	15	16	144	80	86	67	40	54	35	16	305	HO LTE 306
25	20	16	145	100	107	85	49	65	35	19	535	HO LTE 307
32	25	16	160	110	116	85	49	66	39	22	725	HO LTE 308
40	32	16	189	131	137	108	64	83	46	26	1170	HO LTE 309
50	40	16	219	148	157	108	64	89	52	31	1600	HO LTE 310
63	50	16	267	179	191	134	76	108	62	38	2845	HO LTE 311

Options:
EPDM seals (threaded ends) order H0 LTE B**
FPM seals (plain ends) order H0 LTB ***
FDM seals (threaded ends) order H0 LTF $\mathrm{B}^{* *}$

VKD and TKD ball valves can be supplied electrically or pneumatically actuated.

VXE Easyfit ball valves Manual - EPDM seals

with metric series plain female ends for solvent welding

d	DN	PN	L	Z	H	E	B	C	C1	gms	Code
16	10	16	14	54	82	54	49	64	20	180	H0 XEE 305
20	15	16	16	50	82	54	49	64	20	175	H0 XEE 306
25	20	16	19	53	91	63	62	78	23	260	H0 XEE 307
32	25	16	22	59	103	72	71	87	27	365	H0 XEE 308
40	32	16	26	68	120	85	82	102	30	565	H0 XEE 309
50	40	16	31	77	139	100	92	109	33	795	H0 XEE 310
63	50	16	38	98	174	118	110	133	39	1325	H0 XEE 311

d	DN	PN	L	Z	H	E	B	C	C1	gms	Code
75	65	16	44	123	211	157	142	214	115	2750	H0 XEE 312
90	80	16	51	146	248	174	151	239	125	3432	H0 XEE 313
110	100	16	63	161	283	212	174.5	270	145	5814	H0 XEE 314

SXE Easyfit ball check valves Plain ends - EPDM seals

with metric series plain female ends for solvent welding

d	L	Z	C	E	gms	Code
20	17	48	82	50	96	HO SXE 306
25	19	55	93	59	99	H0 SXE 307
32	22	62	106	68	145	HO SXE 308
40	26	75	127	80	234	H0 SXE 309
50	31	84	146	96	357	HO SXE 310
63	38	99	175	116	937	HO SXE 311

Options:
FPM seals (plain ends) order H0 SXF ***

| \mathbf{d} | DN | PN | L | Z | H | E | gms | EPDM Code |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | 65 | 16 | 44 | 123 | 211 | 157 | 2605 | H0 SXE 312 |
| 90 | 80 | 16 | 51 | 146 | 248 | 174 | 3300 | H0 SXE 313 |
| 110 | 100 | 16 | 63 | 157 | 283 | 212 | 5570 | H0 SXE 314 |

SXA Easyfit air release valves Plain ends - EPDM seals

with metric series plain male end for solvent welding

d	DN	PN	L	Z	H	E	gms	Code
20	15	16	16	50	82	54	133	H0 SAE 306
25	20	16	19	53	91	63	171	H0 SAE 307
32	25	16	22	59	103	72	270	H0 SAE 308
40	32	16	26	68	120	85	414	H0 SAE 309
50	40	16	31	77	139	100	608	H0 SAE 310
63	50	16	38	98	174	118	972	H0 SAE 311

Options:
FPM seals (plain ends) order H0 SAF ***

RV Y-Type strainers Socket union ends - EPDM seals

d	DN	P		A	B	E	L	z	H	K	Fig.	gms	Code
Grey Trans. max													
20	15		16	125	72	55	16	103	135	-	A	203	HO UVE 306
25	20	16	16	145	84	66	19	120	158	-	A	358	H0 UVE 307
32	25		16	165	95	75	22	132	176	-	A	526	H0 UVE 308
40	32	16	10	190	111	87	26	155	207	-	A	733	H0 UVE 309
50	40	16	10	210	120	100	31	181	243	-	A	1095	H0 UVE 310
63	50	16	10	240	139	120	38	222	298	-	A	1843	H0 UVE 311

Grey (HO UV****) or Transparent (H0 UT****)
with unionised metric series plain female ends for solvent welding
Options:
FPM seals (plain ends) order H0 UVF ***

VM Diaphragm valves Manual - plain union ends EPDM

d	DN	PN	B	B_{1}	H	h	H_{1}	I	J	L	gms	Code
20	15	10	95	26	147	12	90	25	M6	16	830	H0 UME 406
25	20	10	95	26	154	12	90	25	M6	19	860	H0 UME 407
32	25	10	95	26	168	12	90	25	M6	23	895	H0 UME 408
40	32	10	126	40	192	18	115	45	M8	27	1650	H0 UME 409
50	40	10	126	40	222	18	115	45	M8	32	1730	H0 UME 410
63	50	10	148	40	266	18	140	45	M8	39	2800	H0 UME 411
75*	65	10**	225	55	284	23	215	100	M12	44	7000	H0 VME 412
90*	80	10**	225	55	300	23	215	100	M12	51	7000	H0 VME 413
110*	100	10**	295	69	350	23	250	120	M12	-	10500	H0 VME 414

with metric series plain female ends for solvent welding
$* 75 \mathrm{~mm}, 90 \mathrm{~mm} \& 110 \mathrm{~mm}$ product is spigot ended.
** PN6 for PTFE version.
Options:
FPM diaphragm (plain ends) order HO UMF ***
PTFE diaphragm (plain ends) order H0 UMG ***

VKR Metering ball valve

d	DN	PN	L	Z	H	H_{1}	E	B	B_{1}	C	C_{1}	gms	Code
16	15	16	16	71	103	65	54	54	29	67	40	215	H0 MBE 305
20	15	16	16	71	103	65	54	54	29	67	40	215	H0 MBE 306
25	20	16	19	77	115	70	65	65	34.5	85	49	330	H0 MBE 307
32	25	16	22	84	128	78	73	70	39	85	49	438	H0 MBE 308
40	32	16	26	94	146	88	86	83	46	108	64	493	H0 MBE 309
50	40	16	31	102	164	91	98	89	52	108	64	925	H0 MBE 310
63	50	16	38	123	199	111	122	108	62	134	76	1577	H0 MBE 311

Options:
FPM seals (plain ends) order H0 MBF ***

FK Butterfly valves Manual - EPDM seals

lever operated

d	DN	PN	B_{2}	B_{3}	C	C_{1}	gms	U	Code
50	40	16	60	137	175	100	900	4	H0 FKE 106
63	50	16	70	143	175	100	1080	4	H0 FKE 107
75	65	10	80	164	272	110	1470	4	H0 FKE 108
90	80	10	93	178	272	110	1870	8	H0 FKE 109
110	100	10	107	192	272	110	2220	8	H0 FKE 110
140	125	10	120	212	330	110	3100	8	H0 FKE 111
160	150	10	134	225	330	110	3850	8	H0 FKE 112
225	200	10	161	272	420	122	6750	8	H0 FKE 113

Options:
FPM seals order H0 FKF ***
with gearbox

| d | $\mathbf{D N}$ | $\mathbf{P N}$ | $\mathbf{B}_{\mathbf{2}}$ | $\mathbf{B}_{\mathbf{5}}$ | $\mathbf{B}_{\mathbf{6}}$ | \mathbf{G} | $\mathbf{G}_{\mathbf{1}}$ | $\mathbf{G}_{\mathbf{2}}$ | $\mathbf{G}_{\mathbf{3}}$ | gms | \mathbf{U} | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 250 | 250 | 10 | 210 | 317 | 281 | 88 | 236 | 76 | 250 | 18600 | 12 | H0 FKE 114 |
| 315 | 300 | 8 | 245 | 374 | 338 | 88 | 236 | 76 | 250 | 25600 | 12 | HO FKE 115 |

250 \& 315 mm FK Butterfly valves come with gearbox as standard.
Sizes 160 mm to 225 mm are available with gearbox operation on request.

Product is supplied with DIN 8063 PN10 drillings but ANSI drillings are available on request.

Set of transparent service plugs \& white PVC tag holders
For insertion in handle for (VXE) Easyfit valve customisation

Size mm/inch	Standard pack quantity in units	Product Code
$16-20 /{ }^{1} / 2$	20	LCE020
$25 /{ }^{3} / 4$	20	LCE025
$32 / 1$	20	LCE032
$40 / 1^{1} / 4$	20	LCE040
$50 / 1^{1} / 2$	20	LCE050
$63 / 2$	20	LCE063

Die cut labels plus software White waterproof A4 sheets and freeware editing software to be used with inkjet printers for easyfit valve customisation.

Size mm/inch	No. of sheets	Total labels	Product Code
$16-20 /{ }^{1} / 2$	10	500	LSE020
$25 / 3 / 4$	10	500	LSE025
$32 / 1$	10	500	LSE032
$40 / 1^{1} / 4$	10	500	LSE040
$50 / 1^{1} / 2$	10	400	LSE050
$63 / 2$	10	400	LSE060

Accessories

One-step solvent cement

Litres	gms	Code
0.5	500	03462395

Durapipe PVC-U solvent cement must be used for jointing of Durapipe PVC-U pipework systems.

Eco-cleaner

Litres		gms	Code
PDoung	0.5	500	03457395

Durapipe ECO cleaner must be used for jointing of Durapipe PVC-U pipework systems.

HCR-36 Chemically resistant PVC cement

Description	
1 litre	03468396

03468396

Cleaner for use with HCR-36 Chemically resistant PVC cement

Description	Code
$1 / 2$ litre	03467395

Cobra pipe clips

Size	A		B		C	D	G	Bolt/Screw		gms	Code
$* 12$	-	24	25	15	16	M4/3BA/No 8	5	13434304			
$* 16$	-	35	25	17	16	M4/3BA/No 8	7	13434305			
$* 20$	-	35	30	14	16	M5/1BA/No 10	8	13434306			
$* 25$	-	35	35	16	17	M5/1BA/No 10	11	13434307			
32	65	45	40	17	17	M5/1BA/No 10	14	13434308			
40	75	65	45	20	20	M5/1BA/No 10	21	13434309			
50	85	50	50	22	21	M6/0BA/No 10	30	13434310			
63	102	60	60	19	21	M6/0BA/No 10	42	13434311			
75	122	70	70	27	31	M8	94	13434312			
90	148	80	90	39	31	M8	121	13434313			
110	171	90	96	36	35	M8	184	13434314			
125	185	161	96	9	17	M8	237	13424315			
140	188	176	112	13	19	M8	252	13424316			
160	238	219	150	10	40	M8	330	13424317			

*Clips 32 mm and above are fitted with a pipe retaining strap. Bolts/screws not supplied. When using 32 mm clip on $1^{\prime \prime}$ pipe strap is not needed.

Chamfering and de-burring tools

Durapipe PVC-U solvent cement must be used for jointing of Durapipe PVC-U pipework systems.

Pipe cutters

Description	Code
$16-63 \mathrm{~mm}$ pipe cutter	FT 800001
$50-125 \mathrm{~mm}$ pipe cutter	FT 800003
$16-63 \mathrm{~mm}$ spare cutter wheel	FT 800002
$50-125 \mathrm{~mm}$ spare cutter wheel	FT 800004

Pipes, Fittings \& Valves
Imperial PVC-U \# PVC-U system

Guardian Dual
 Contained Pipework
 Technical Data

Durapipe
Gưardian

DURAPIPE GUARDIAN

Durapipe Guardian is a completely new Dual Contained pipework system made from PVC-U material.

Guardian is a unique system that incorporates a patented Centra-Lok"' system, which provides a solid fixed fitting, offering a true point of difference from other dual contained systems on the market.

Manufactured in PVC-U material, Durapipe Guardian is ideal for water and waste treatment applications as it allows the safe transportation of different fluids and some chemical concentrates without fear of corrosion and environmental pollution.

Key Product Information

- Size Range: ½"\#2" up to 8"\#12"
- Pressure Rating: Class E 15 bar
- Temperature Rating: +5 to $60^{\circ} \mathrm{C}$

Key Product Features

- Patented Centra-Lok ${ }^{m "}$ system holds fitting in the correct place prior to installation
- Extremely easy to install - Solvent Weld jointing for both inner and outer
- Visual or automated leak detection system available

Typical Applications

- Water and waste water treatment
- Chemical process
- Pharmaceutical
- Industrial process
- Food and beverage
- Marine
- Potable water

Guardian Introduction

Dual contained pipework for when leaks are not an option...

Durapipe Guardian - Your dual contained specialist

Creating a safe working environment, offering strong environmental control is imperative in many industrial applications, particularly within the water treatment, chemical processing and process application sectors. Pressures are increasing for businesses to provide extra reliability not only to their workforce, but also to the environment they are operating within, driving demand for extra reliability provided with a dual contained pipework system.
Durapipe Guardian dual contained pipework system utilises state-of-the-art technology, using pre-assembled components that guarantee reliability, ease of installation and fewer joints than many other competitor systems on the market, providing a perfect solution to applications when leaks are NOT an option!

What is Guardian?

Overview

- Dual contained pipework system
- Full range of pipe, fittings,
valves and terminations
- Easy to install
- Fully imperial sized system

Material Selection

Durapipe Guardian is manufactured from PVC-U material which makes the system ideal for conveying industrial fluids in demanding environments.

Leak Detection

As part of the Durapipe Guardian range, we can also offer a range of leak detection systems, both physical and optical.
See Page 93 for more information.

Design

The Guardian system offers a complete selection of pretested modular components which are extremely easy to install.
Our Centra-Lok ${ }^{\text {TM }}$ patented design means the Guardian system averages up to 60% fewer overall joints than other systems on the market. Since joints are always the most common source of premature failures and leaks, it is easy to realise the immense impact the patented Centra-Lok ${ }^{\top \mathrm{TM}}$ design has on maintenance, repair and installation costs.

Easy to install

Guardian is the easiest system of its kind (dual contained) to install. Following the same simple solvent cement jointing process as singlewall PVC-U, there are no special tools, equipment or hot works permits required. Please see page 83 for full jointing instructions.

Where is Guardian used?

- Water and Waste Treatment
- Chemical Waste
- Process Applications
- Chemical Manufacturing/ Pharmaceutical
- Electronics/Data Storage

What is it commonly used for?

- Chemical Treatment - Aggressive Chemicals
- Unknown/Hazardous Waste
- High Value Contents
- Water Damage Prevention

Leak Prevention

Booster Pump Station, Audenshaw

The station delivers drinking water into North West water company United Utilities' Manchester ring main from the Thirlmere Aqueduct. Following a review, it became apparent that the phosphate dosing operation at the site was in need of attention, in particular, the existing pipework carrying the aqueous solution of sodium orthophosphate from the glass reinforced plastic storage tanks to the dosing rig.
Byzak Limited installed the Guardian pipework system to transfer the sodium orthophosphate from the storage tanks to the dosing rig, using 1 " carrier pipe in $3^{\prime \prime}$ containment pipe.

Contamination Prevention

Water Treatment Works, Rivington

Durapipe Guardian installed at Rivington Water Treatment Works, specified to transport sodium hypochlorite safely from the bulk storage tanks to each of the seven new pumps installed within the plant.
The pipework is installed within the ceiling voids of the plant, therefore due to the nature of the chemicals planned for transportation, it was vital that the system is dual contained to prevent any potential leakages spilling out into the plant and endangering unprotected workers.

Durapipe
 Guardian
 Case Study Examples

Factory Installation

Armstrong World Industries, Gateshead

Durapipe Guardian installed at Armstrong World Industries, a global manufacturer of ceiling and floor products and commissioned ProMinent.
The system was specified as a dual contained pipework system to carry 2000ppm Carbon Dioxide from manufacturing through to settle tanks ready for discharge.

Chemical Transportation

Water Treatment Works, Egham

Durapipe Guardian installed at Egham Water Treatment Works during a period of pipework regeneration.
Contractors IDS required a dual contained system in order to transport orthophosphoric acid and polyaluminium chloride around the plant safely.

Guardian Installation

Solvent Cement Jointing (Individual)

PVC

1. The pipe must be cut clean and square. A suitable wheel cutter will eliminate swarf. As an alternative (and on larger sizes) a carpenter's saw should be used, however this may create dust and swarf which can enter the system. Remove all burrs from both the inside and outside edge of the pipe with a knife, file or reamer and chamfer the end of the pipe using a coarse file or suitable chamfering tool. The chamfer should be approximately 45° by 3 mm to 5 mm depending on the pipe size. Remove any dirt, grease or moisture. A thorough wipe with a clean, dry rag is usually sufficient. Check dry fit. Pipe should insert easily into socket, approximately $1 / 4$ to $3 / 4$ of the total socket depth.

2. Clean surfaces thoroughly with Durapipe Eco-cleaner using lint free cloth/paper towel.

3. Using a clean brush, apply Durapipe PVC One-step cement to the carrier pipe and inner fitting. HCR-36 cement and cleaner should be used for aggressive chemicals, for more information please see page 18.
The joint surfaces should be completely covered by cement. Cement should be applied using an appropriate size brush and tin of cement. It is important to apply cement quickly to enable assembly without excessive force being required. When applying cement with a brush, the size of the brush should be approximately half the size of the pipe to be jointed - brush size up to $2^{1 / 2 "}$ for 0.5 litre tins.

4. Without delay assemble while cement is still wet, push the pipe fully home into the fitting using sufficient force to ensure that pipe bottoms in socket. Hold together for about thirty seconds to make sure joint does not separate. With a rag, wipe off excess cement. Avoid disturbing the joint.

Gưarardian

5. Repeat step 3, but this time for the containment pipe and outer fittings.

6. Without delay assemble the outer joint as described in step 4. This process (points 3-6), can be repeated using standard PVC sockets to extend the pipe lengths, until there is a change of direction needed.

Solvent Cement Jointing (Simultaneous)

There will be circumstances where it will not be possible to joint the carrier pipework and the containment pipework separately. At this point a simultaneous joint will be required.
7a. Determine proper carrier pipe lengths to achieve desired centre-to-centre dimension. Cut to size and prep ends as detailed in steps 1 \& 2 .

7b. Generally containment pipe needs to be shorter than the carrier pipe. This distance can be worked out from the data on pages 90-91. A2 - A1 = Additional length of carrier pipe eg. for $1 / 2^{\prime \prime} \# 2^{\prime \prime}\left(90^{\circ}\right.$ Elbow) this equates to 35.1 $12.7=22.4 \mathrm{~mm}$

Hence the carrier pipe needs to be 22.4 mm longer than the containment pipe, for simultaneous jointing. Measure and cut both the carrier and containment pipes to the required distance and chamfer and clean the pipe and fittings as described in steps 1 \& 2.

8. Install Centra-guide support at pipe's end. Distance between the fitting and support should not exceed 11/2 metres. Install additional supports if required.
9. Clean surfaces thoroughly with Durapipe Eco-cleaner and apply solvent cement to carrier and containment sockets and pipe ends. Push the fitting fully home so that it is against the pipe stop.

10. Wipe off excess cement from the outside of the joint.
11. Do not disturb the joint for at least 15 minutes. On larger sizes do not subject the joint to bending or twisting forces for at least 4 hours. When making subsequent joints, which can be done without waiting, take care not to transmit forces to freshly made joints in the system.
Depending upon the chemical being used HCR cement may be required. Please refer to Page 18.

IMPORTANT: Always apply Eco-cleaner and cement liberally. Do not take shortcuts. Follow Guardian instructions explicitly.

Termination Fittings

Guardian PVC termination fittings (up to 4" carrier pipe) are supplied as one-piece components, complete with carrier pipe O-Rings. Always bevel carrier pipe end or damage to the O-Rings will occur. Clean surfaces of both the containment pipe and the socket of the termination fitting thoroughly with Durapipe Eco-cleaner. Apply cement to both containment pipe and termination socket and slide into position. Allow 24 hours cure time prior to testing. The fitting is supplied as standard with taps to allow for venting, draining, leak detection etc. If this plug is not needed it can be plugged with a standard $1 / 2^{\prime \prime}$ BSP PVC plug (Durapipe code 02155 102)

Do not apply Eco-cleaner or solvent cement to O-Rings.

Termination fitting up to $4^{\prime \prime}$ carrier pipe

All C-style termination fittings (for carrier pipe larger than 4") are shipped completely assembled and ready for field installation.

Slide the termination fitting over the carrier pipe and into the end of the containment pipe, recessing it approximately one inch from the containment pipe end. As the bolts are tightened, the end plates compress the elastomeric material creating a seal between the carrier and containment pipe. Tighten all bolts following the torque sequence (as below).

NOTE: I.D. and O.D. of termination fitting are sized per specified carrier and containment pipe.

Using a C-style termination to pressure test installed pipework.
To properly test the containment pipe joints, first seal the interstitial space located at both ends of the pipe run.

Second, provide a port to pressurise and depressurise the section of pipe to be tested. A C-style termination fitting can be used to seal the interstitial space and provide a pressurisation port for testing purposes. When permanently installed, it acts as a termination fitting with a drain valve. It is also used temporarily to test containment joints in subassemblies before joining to your next subassembly.
Once a successful pressure test is completed, the fitting can be removed and used again.

Cleaning and Installation

Following installation, the installer shall check the operation of all valves, leak detection, devices and ancillary items. The annular space should be purged of moisture containing air, by replacing the volume of air with clean, dry nitrogen.

Common Mistakes

- Insufficient amount of cement
- Incorrect or outdated cement
- Eco-cleaner not being used
- Pipe ends not chamfered
- Pipes not fully inserted (Inner pipe too short)
- Pipes misaligned
- Contamination (dirt) on cementing area
- Improper positioning of closure coupling on containment pipe
- Movement of pipe sections before cement is fully cured
- Wrong size brush

1. Always use containment pipe dimensions as the basis for determining piping layout, centre-to-centre dimensions and expansion loop size.
2. Termination fittings are usually required at the beginning, end and at any branch line of double containment systems, except when draining back to a collection sump, pit or tank.
3. Systems with long runs or extreme temperature changes may require expansion loops or elbows, TEDs or changes in direction.
4. Durapipe UK technical support team should be consulted for correct determination of suitability of chemicals.
5. For above-ground and outdoor applications, UV protection may be required on certain materials.

Care should be taken to avoid exposure to UV light, eg. sunlight, particularly during storage.
This will cause discolouration and deterioration of the PVC-U material.
Whilst this is a surface effect only, it is recommended that precautions be taken to prevent this happening.
If stored outdoors pipe should be covered with opaque sheeting.
If installed outdoors it can be protected from the effects of UV by insulating or painting.

NOTE: Always allow 24 hours or more, depending on environmental conditions, before testing carrier/containment pipe. Please allow 48 hours for sizes above 8".

External Support

Support and spacing requirements for double containment pipe systems should be equal to standard above-ground PVC-U piping. It is important to place hangers near interstitial supports. Additional external support considerations should be given to components such as valves, in-line pumps or other heavy items.

Horizontal piping systems should be supported on uniform centers, which are determined by maximum containment pipe temperatures (see support chart for recommendations). Values apply to uninsulated lines either in a building or exposed to the environment.
Regardless of the type of hanger selected, it is important to note that a wide surface is recommended, free from burrs and sharp edges. Do not anchor by means of a U-bolt directly to the containment pipe.

When pipe clips are used, they should not force the pipe fittings into position. Each pipe section should be laid out and jointed to its mating section. Once the joints have been completed, the final support is in place. When correctly installed, a clip or anchor can be loosened or removed without the pipe shifting.

| Pipe Size Inner\# Outer
 (Inch) | Minimum Support Spacing
 at 20
 ($\mathbf{~})$ |
| :---: | :---: | :---: |
| $1 / 2 \# 2$ | 1.80 |
| $3 / 4 \# 3$ | 2.25 |
| $1 \# 3$ | 2.15 |
| $11 / 4 \# 4$ | 2.40 |
| $2 \# 4$ | 2.20 |
| $3 \# 6$ | 2.75 |
| $4 \# 8$ | 3.10 |
| $6 \# 10$ | 3.30 |
| $8 \# 12$ | 3.50 |

Pressure Testing Guardian PVC-U Dual Contained Pipework

Test Method: Carrier (inner) Pipework

After the joints have been allowed to cure for the appropriate minimum drying time (at least 24 hours @ $20^{\circ} \mathrm{C}$).

- The system should be divided into sections (if appropriate) for testing. Fill with cold water ensuring no air pockets remain. Do not pressurise at this stage.
- Check the pipework for any obvious leaks, if none are apparent, check for and remove any remaining air.
- Increase the pressure up to 3 bar. Do not pressurise further at this stage.
- Leave pressurised for 10 minutes, if pressure decays, inspect for leaks and rectify as necessary. If pressure remains constant, slowly increase the hydrostatic pressure to $11 / 2$ times the nominal operating pressure (max 22.5 bar).
- Leave pressurised for a period not exceeding 1 hour. During this time the pressure should not change.
- If extended times are required to achieve hydrostatic pressure, either leakage has occurred or air remains in the line, Inspect for leaks and if none are apparent, reduce the pressure and check for trapped air. This must be removed prior to further pressurisation.

> NOTE: If leaks are found at any stage, the system must be depressurised and drained. It is not possible to make a repair to leaking pipe or fittings, therefore such components must be cut out and replaced. All new joints must be fully cured prior to re-testing.
> THE USE OF GAS OR COMPRESSED AIR IS NOT PERMITTED AS A TEST MEDIUM FOR CARRIER PIPE.

Test Method: Containment (outer) Pipework

A low-pressure air test is the recommended method for testing the containment pipe. However, a hydrostatic water test is possible for the containment zone.

Low-pressure air test

After the joints have been allowed to cure for the appropriate minimum drying time (at least 24 hours up to 8 ", sizes $10^{\prime \prime} \& 12$ " require a minimum of 48 hours @ $20^{\circ} \mathrm{C}$).

- The containment pipe can be low-pressure air tested at up to 0.5 bar regulated pressure.
- If the pipework contains 'zone fittings' each zone of the pipework will need to be tested individually.
- The system must not be directly connected to a compressed air-line, nitrogen bottle or any unregulated pressure device. It is imperative that a working pressure regulator be used during the pneumatic test to ensure over pressurisation does not occur.
- The test equipment must have a pressure limiting device, set to 0.5 bar, at the source and an air relief device, set to 0.5 bar, at the end of the system.
- Use a spray bottle containing soap and water solution to examine for leaks in the containment pipework.
- If any leaks are discovered, the system must be depressurised before components are cut out and replaced.

NOTE: Some compressor oils can contain damaging elements to PVC-U pipe, check with the manufacturer of the compressor oil for its suitability with PVC-U pipe.

Alternative hydrostatic pressure test for containment pipe

After the joints have been allowed to cure for the appropriate minimum drying time (at least 24 hours up to 8 ", sizes $10^{\prime \prime} \& 12^{\prime \prime}$ require a minimum of 48 hours @ $20^{\circ} \mathrm{C}$).

- The carrier pipe must be filled with water.
- The containment pipe should be divided into sections see notes below (if appropriate) for testing.
- Fill with cold water ensuring no air pockets remain. Do not pressurise at this stage.
- Check the pipework for any obvious leaks, if none are apparent, check for and remove any remaining air.

The carrier pipe must be pressurised to equal or greater than the maximum test pressure of the containment pipe.

- Increase the pressure up to 3 bar. Do not pressurise further at this stage.
- Leave pressurised for 10 minutes, if pressure decays, inspect for leaks and rectify as necessary. If pressure remains constant, slowly increase the hydrostatic pressure to $1 \frac{1}{2}$ times the nominal operating pressure (Maximum 13.5 bar).
- Leave pressurised for a period not exceeding 1 hour. During this time the pressure should not change.
- If extended times are required to achieve hydrostatic pressure, either leakage has occurred or air remains in the line, Inspect for leaks and if none are apparent, reduce the pressure and check for trapped air. This must be removed prior to further pressurisation.

NOTES: The Guardian Zone fittings are not designed to hold the maximum working pressure of the system from zone to zone, if zone fittings are incorporated within the system they MUST NOT BE USED to divide the system into sections for hydrostatic testing. For testing, each side of the zone fittings must be pressurised to an equal amount at all times.
If leaks are found at any stage, the system must be depressurised and drained. It is not possible to make a repair to leaking pipe or fittings, therefore such components must be cut out and replaced. All new joints must be fully cured prior to re-testing.
When using C-style termination fittings and applying a test pressure of more than 2.5 bar, measures need to be taken to prevent slippage of the secondary containment fitting by installation of suitable anchors.

Gưuiar ${ }^{\text {undian }}$

Expansion Loop and Elbows

A common method to control the effects of expansion or contraction in a piping system is to install a combination of anchors and guides with expansion loops. Anchors direct pipe to free movement area. Guides control the carrier pipe movement down the bore of the containment pipe to, and away from, the expansion loop.
A relaxed expansion loop as well as one subjected to temperature change are depicted below. As you can see, when a pipe is subjected to temperature change, some degree of movement will occur. Failure to compensate for temperature change may cause stress and ultimately failure.
The carrier and containment pipes are anchored together at every change of direction due to the way in which the unique Centra-Lok ${ }^{\text {m }}$ component connects the fittings together.

For this reason it is important to install standard tees (outer) and 90° elbows (inner) in order to allow for the carrier pipe to move independently. The open socket can then be plugged once the system has been pressure tested. See pages 11-13 for details on calculating expansion loop size.

Standard 90° Elbow inside standard PVC tee to allow pipe to move.

Expansion Joints

We have introduced a new expansion joint that provides an easy to install solution for the complex expansion and contraction of a double contained piping system. This piston style expansion joint features:

- 150 mm of travel for both carrier and containment pipe
- Triple O-ring design for a reliable water tight seal
- Independent movement for both carrier and containment pipe
- Tap and plug on containment for drainage
- Piston guides to ensure smooth motion without buckling
- Pressure rated design up to 16 bar

Durapipe Guardian Double Containment Expansion Joints are engineered to accommodate the various expansion and contraction found in a contained piping system. The carrier and containment pipe are allowed to expand and contract independently of each other to ensure proper compensation regardless of ambient or process temperature differentials, pipe size, or layout differences. The expansion joint is shipped fully assembled, using factory tested joints, to eliminate the need for costly field joints that could create leak paths.

NOTE: Free space area denotes maximum movement of carrier to initial interference with containment.
Unwanted stresses resulting from thermal expansion can be minimised or eliminated by providing for flexibility in a double containment piping system. This is achieved by incorporating expansion loops or elbows.

Maximum Expansion Per Loop Size	
Size (inch)	
$1 / 2 \# 2$	Free Space Area (mm)
$3 / 4 \# 3$	16.00
$1 \# 3$	26.00
$11 / 2 \# 4$	23.00
$2 \# 4$	27.00
$3 \# 6$	13.00
$4 \# 8$	22.00
$6 \# 10$	34.00
$8 \# 12$	22.00
	14.00

Double Containment Expansion Joint

Carrier/ Containment A	B	C	D	E	Code	
1" \# 3"	106.68	134.62	889.41	259.08	383.54	08 TED 104
$2 " \# 4 "$	134.62	193.04	939.80	312.42	469.90	08 TED 107
3" \# 6"	198.12	218.44	1295.4	304.80	438.15	08 TED 109
$4 " \# 8 "$	254.00	273.05	1346.2	330.20	438.15	08 TED 110

[^2]
Guardian Dimensional Information

PVC Dual Contained pipe

Carrier/ Containment	Class	$\begin{gathered} \mathrm{L}_{1} \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \mathrm{L}_{2} \\ & \mathrm{~m} \end{aligned}$	OD1 mm	$\begin{gathered} \mathrm{t}_{1} \\ \mathrm{~mm} \end{gathered}$	OD2 mm	t_{2}	Code
1/2"\#2"	E/C	6	1.5	21.2	1.9	60.2	3.4	0851310
3/4"\#3"	E/C	6	1.5	6.6	2.4	88.7	5.0	0851310
1"\#3"	E/C	6	1.5	33.4	3.0	88.7	5.0	0851310
11/2"\#4"	E/C	6	1.5	48.1	4.4	114.1	6.4	0851310
2"\#4"	E/C	6	1.5	60.2	5.	114.1	6.4	0851310
3"\#6"	E/C	6	1.5	88.7	8.1	8.0	9.4	08513109
4"\#8"	E/C	6	1.5	114.1	10	218.8	12.2	0851311
6 "\#10"	E/C	TBA	TBA	TBA	TBA	TBA	TBA	08513112
8"\#12"	D/C	TBA	TB	TBA	TBA	TBA	TBA	08512

Carrier pipe is Class E or Class D. Containment pipe is Class C.

PVC Dual Contained pipe clear outer

Carrier/ Containmen	Class	$\begin{gathered} \mathrm{L}_{1} \\ \mathrm{~m} \end{gathered}$	m	mm	$\begin{gathered} \mathbf{t}_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \text { OD2 } \\ & \mathrm{mm} \end{aligned}$	t_{2}	Code
1/2"\#2"	E/C	6	1.2	21.2	1.9	60.3	5.19	0851410
3/4"\#3"	E/C	6	1.2	6.6	2.4	88.9	7.27	08514103
1"\#3"	E/C	6	1.2	3.4	3.0	88.9	7.27	0851410
11/2"\#4"	E/C	6	1.2	8.1	4.4	114.3	10.15	0851410
2"\#4"	E/C	6	1.2	60.2	5.4	114.3	15	08514107
3"\#6"	E/C	6	1.2	88.7	8.1	168.3	15.32	08514109
4"\#8"	D/C	6	1.2	114.1	10.3	218.8	20.17	08514

This product is supplied as:
$1 \times 6 \mathrm{~m}$ length of grey inner pipe
$2 \times 3 \mathrm{~m}$ lengths of clear outer pipe
$1 \times$ socket (loose)
$6 \times$ Centra-guide spacers
Centra-Lok ${ }^{\text {TM }} 90^{\circ}$ Tees Equal plain

Carrier/ Containment	A1	A2	ID1	ID2	Code
1/2"\#2"	12.7	35.1	21.3	60.5	08122102
3/4"\#3"	17.3	49.8	26.7	88.9	08122103
1"\#3"	19.1	49.8	33.5	88.9	08122104
11⁄2"\#4"	26.9	65.8	48.3	114.3	08122106
2"\#4"	31.8	65.8	60.5	114.3	08122107
3"\#6"	46.7	95.0	88.9	168.1	08122109
4"\#8"	59.4	122.2	114.3	218.9	08122110
6"\#10"	155.4	238.3	168.1	273.1	08122112
8"\#12"	180.8	301.5	218.9	323.9	08122113

CAUTION: Do not use or test the products in this manual with compressed air or other gases.

Centra-Lok ${ }^{\mathrm{mm}} 9 \mathbf{0}^{\circ}$ Elbows Plain

Carrier/ Containment	A1	A2	ID1	ID2	Code
1/2"\#2"	12.7	35.1	21.3	60.5	08115102
3/4"\#3"	17.3	49.8	26.7	88.9	08115103
1"\#3"	19.1	49.8	33.5	88.9	08115104
11/2"\#4"	26.9	65.8	48.3	114.3	08115106
2"\#4"	31.8	65.8	60.5	114.3	08115107
3"\#6"	46.7	95.0	88.9	168.1	08115109
4"\#8"	59.4	122.2	114.3	218.9	08115110
6"\#10"	88.9	150.6	168.1	273.1	08115112
8"\#12"	115.8	176.0	218.9	323.9	08115113

Centra-Lok ${ }^{\text {Tm }} 45^{\circ}$ Elbows Plain

Carrier/ Containment	A1	A2	ID1	ID2	Code
1/2"\#2"	6.4	22.1	21.3	60.5	08119102
3/4"\#3"	8.6	25.4	26.7	88.9	08119103
1"\#3"	9.7	25.4	33.5	88.9	08119104
11/2"\#4"	12.7	31.8	48.3	114.3	08119106
2"\#4"	15.7	31.8	60.5	114.3	08119107
3"\#6"	19.1	50.8	88.9	168.1	08119109
4"\#8"	25.4	57.2	114.3	218.9	08119110
6"\#10"	44.5	120.7	168.1	273.1	08119112
8"\#12"	50.8	173.0	218.9	323.9	08119113

Guardian Zone fitting Plain

Carrier/ Containment	ID1	OD1	L1	Z	Code
$1 / 2 " \# 2 "$	25	36	135	11	08496102
$3 / 4 " \# 3 "$	29	44	140	15	08496103
$1 " \# 3 "$	36	60	140	24	08496104
$11 / 2 " \# 4 "$	49	78	196	29	08496106
$2 " \# 4 "$	56	95	196	39	08496107
$3 " \# 6 "$	64	101	220	37	08496109
$4 " \# 8 "$	78	120	235	42	08496110

PVC/PVC Termination fitting EPDM Plain/O-Ring seal

PVC/PVC Termination fitting FPM Plain/O-Ring seal

C-Style Termination fitting

Size	No of Bolts	Bolt Size	Max Torque	Code
6\#10	6	5/16NC	10ft lbs	08143112
8\#12	6	5/16NC	10ft lbs	08143113

PVC/PVC VKD valve Plain

Carrier/ Containment	L1	L2	A3	ID1	ID2	Code
1/2"\#2"	192	104	186	21.3	60.5	08 DKE 102
3/4"\#3"	196	106	213	26.7	88.9	08 DKE 103
1"\#3"	260	135	242	33.5	88.9	08 DKE 104
11/2"\#4"	310	200	269	48.3	114.3	08 DKE 106
2"\#4"	370	200	299	60.5	114.3	08 DKE 107
3"\#6"	460	270	370	88.9	168.1	08 DKE 109
4"\#8"	620	310	480	114.3	218.9	08 DKE 110

Option:
Available with FPM seals. To order use 08 DKF ***

CAUTION: Do not use or test the products in this manual with compressed air or other gases.

Guardian Leak Detection Kits

Standard leak detection kit Consisting of equal tee, bush,
1 m clear PVC pipe and VXE Easyfit PVC ball valve

Description	Code
Leak detection tee kit to fit 2" OD containment pipe	08191107
Leak detection tee kit to fit 3" OD containment pipe	08191109
Leak detection tee kit to fit 4" OD containment pipe	08191110
Leak detection tee kit to fit 6" OD containment pipe	08191112
Leak detection tee kit to fit 8" OD containment pipe	08191113

Retrofit leak detection kit Consisting of clamp saddle, threaded socket, threaded adaptor, 1 m clear PVC pipe and VXE Easyfit PVC ball valve

Description	Code
Leak detection saddle kit to fit 2" OD containment pipe	08192107
Leak detection saddle kit to fit 3" OD containment pipe	08192109
Leak detection saddle kit to fit 4" OD containment pipe	08192110
Leak detection saddle kit to fit 6" OD containment pipe	08192112
Leak detection saddle kit to fit 8" OD containment pipe	08192113

Leak Detection System

Durapipe Guardian dual contained pipework accepts many forms of leak detection equipment. Our technical support team can advise on your leak detection options. For all leak detection queries, please contact our technical support on $+44(0) 1543272445$.

Accessories

One-step solvent cement

Litres	gms	Code
0.5	500	03462395

Durapipe PVC-U solvent cement must be used for jointing of Durapipe PVC-U pipework systems.

Cleaner for use with HCR-36 Chemically resistant PVC cement

Eco-cleaner

Litres	gms	Code
0.5	500	03457395

Durapipe Eco-cleaner must be used for jointing of Durapipe PVC-U pipework systems.

Cobra pipe clips

Size	A	B	C	D	G	Bolt/Screw		gms	Code
2	102	60	60	19	21	M.6/0BA/ No 10	42	13434311	
3	148	80	90	39	31	M.8	121	13434313	
4	171	90	96	36	35	M.8	185	13434314	
6	243	170	150	40	40	M.8	185	13434317	

Durapipe UK Pipework Systems

ABS

- Ideal for chilled, potable and waste water
- Tough, durable, lightweight and fully approved
- Suitable for use from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Fully matched system of pipes, fittings and valves

Air-Line Xtra

- High performance thermoplastic pipework system for compressed air

Corzan

- Solvent weld thermoplastic pipe system for aggressive substances
- Designed specifically for use in highly corrosive conditions at temperatures up to $95{ }^{\circ} \mathrm{C}$
- Valves range available

Valves \& Flow Control

- Manual and actuated flow control solutions
- For use with all Durapipe systems
- Lightweight and easy to install

PLX

- Purpose designed for safe fuel transfer
- Suitable for pressure and vacuum applications
- Resists fuel permeation

Polypropylene

- Conveys chemicals at temperatures up to $100^{\circ} \mathrm{C}$
- Excellent resistance to a wide range of substances
- Available in larger diameters up to 500 mm
- Full range of valves

PVC-U

- Versatile, multi-purpose solvent weld pipework system with an extensive range of valves and fittings
- The established system for process and industrial handling of chemicals and water up to $60^{\circ} \mathrm{C}$
- Guardian dual contained PVC-U pipework system

Vulcathene

- Safe chemical drainage
- Two easy jointing methods - Mechanical or Enfusion
- Ideal for schools, universities and colleges, hospitals and clinics, pharmaceutical and research organisations

DURAPIPE UK CONDITIONS OF SALE

1. DEFINITIONS:
'Seller' shall mean Glynwed Pipe Systems Limited, registered in England under number 1698059. 'Buyer' shall mean any company, organisation or individual to whom a quotation is offered, or whose order is accepted by the Seller.
2. CONDITIONS:

All offers, quotations, estimates, acceptances and contracts are subject to these Conditions of Business and any terms or conditions which any other person shall seek to impose or make part of any contract shall, so far as is inconsistent with these Conditions of Business, not apply unless expressly agreed by the Seller in writing. The headings in these conditions are for convenience only and shall not affect their interpretation.
3. QUOTATIONS AND PRICE VARIATION:
a) Any quotation given by the Seller is an invitation to the Buyer to make an offer only and no order of the Buyer placed with the Seller in pursuance of a quotation or otherwise shall be binding on the Seller unless and until it is accepted in writing by the Seller.
b) Unless stated otherwise, all quotations and published price lists are ex works, exclusive of VAT and shall remain valid for 30 days or such a period as may be quoted but nevertheless the Seller may amend or withdraw any quotation by written or oral notice. Quotations may be varied if the Buyer makes variations in his specifications.
c) Certain products are denoted 'MTO' in the Seller's published price lists. These products are Made to Order Goods and the Seller manufactures or procures these goods on a bespoke basis only. Where a Buyer has made an offer for 'MTO' products that the Seller has accepted in writing the Buyer forfeits their right to cancel their offer unless the Seller confirms in writing that it will accept cancellation by the Buyer. Where the Seller does not provide written confirmation of the Buyer's cancellation the Buyer remains liable for the full contractual value of all 'MTO' products.
4. STATEMENTS OR REPRESENTATIONS TO THE BUYER:

If any statement or representation has been made to the Buyer upon which the Buyer relies other than in the documents enclosed with the Seller's quotation, the Buyer must set out that statement or representation in a document to be attached to or endorsed on the order in which case the Seller may submit a new quotation.
5. DELIVERY - TIME:
a) Any period for delivery given at any time and in any manner by the Seller is an estimate only and is not binding on the Seller. Delivery periods are normally calculated from the later of:
i) acceptance of order; or
ii) where applicable, the receipt by the Seller of a detailed specification or drawings.
b) Time shall not be deemed to be of the essence of the contract. Failure by the Seller to meet any quoted delivery period for any part or the whole of the order shall not entitle the Buyer to rescind the contract or to claim damages of any nature.
c) The Seller will endeavour to comply with reasonable requests by the Buyer for postponement of delivery but shall be under no obligation to do so. Where delivery is postponed otherwise than due to default by the Seller the Buyer shall pay all costs and expenses including a reasonable charge for storage and transportation occasioned thereby and an extra charge for split delivery if applicable.
d) The Buyer will receive delivery of any consignment between the hours of 8.00 am and 4.00pm Monday to Friday inclusive, unless otherwise agreed in writing. Cost incurred by the Seller arising from the Buyer's refusal to accept consignments within the agreed hours shall be borne by the Buyer.
6. DELIVERY AND RISK:
a) Except where stated to the contrary in the contract, delivery shall be made as follows: i) where the Buyer provides the transport, delivery shall be made ex the Seller's works;
ii) where the Seller provides the transport, delivery shall be made to the premises of the Buyer, or the premises of the Buyer's customer or works site if the Buyer has requested delivery to be so made but where the Buyer has made such a request the Seller will make a first delivery to the Buyer's customer or works site as so much of the goods as is available for that delivery but subsequent deliveries will be made to the premises of the Buyer.
b) The Seller may at its discretion make partial delivery of orders and invoice the same.
c) Risk in the goods shall pass on delivery.
d) Where goods are sent FOB the Seller's responsibility shall cease when the goods are placed on board ship or aircraft without the need for the Seller to give notice to the Buyer and the provisions of Section 32(3) of the Sale of Goods Act 1979 shall not apply.
7. OWNERSHIP OF GOODS:
a) The goods shall remain the sole and absolute property of the Seller as legal and equitable owner until such time as the Buyer shall have paid to the Seller the contract price together with the full price of any other goods the subject of any contract between the Seller and the Buyer.
b) The Buyer acknowledges that until such time as the property in the goods passes to the Buyer he is in possession of the goods as a bailee and fiduciary agent for the Seller and the Purchaser shall store the goods in such a manner that they are clearly identifiable as the property of the Seller.
c) Until payment due under all contracts between the Buyer and the Seller had been made in full, in the event of sale of the goods by the Buyer:
i) the Seller shall be entitled to trace all proceeds of sale received by the Buyer through any bank or other account maintained by the Buyer; and
ii) the Buyer shall if requested by the Seller in writing to so assign its rights to recover the selling price of the goods from the third parties concerned. Such monies to be held separately by the Buyer as agent on behalf of the Seller.
d) The Seller may for the purpose of recovery of its goods enter upon any premises where they are stored or where they are reasonably thought to be stored and may repossess the same.
8. TERMS OF PAYMENT:

In the event of default in payment according to the agreed payment terms between the Seller and the Buyer - i.e. by the end of the month following the month of despatch of the goods the Seller shall be entitled without prejudice to any other right or remedy to suspend all further deliveries and to charge interest on any amount outstanding at the rate of 2% per month until payment in full is made (a part of a month being treated as a full month for the purpose of calculating interest).
9. SHORTAGES AND DEFECTS APPARENT ON DELIVERY:
a) It shall be the responsibility of the Buyer to inspect or arrange for an inspection of the goods on delivery whether the goods are delivered to the Buyer's premises or to the premises of the Buyer's customer or to a works site. If no such inspection is made the Buyer shall be deemed to have accepted the goods.
b) The Buyer shall have no claim for shortages or defects apparent on inspection unless:
i) a written complaint is made to the Seller within three days of receipt of the goods specifying the shortage or defect; and
ii) the Seller is within seven days of receipt of the complaint given an opportunity to inspect the goods and investigate the complaint before any use is made of the goods.
c) If a complaint is not made to the Seller as herein provided then in respect of such shortages or defects the goods shall be deemed to be in all respects in accordance with the contract and the Buyer shall be bound to pay for the same accordingly.
10. CLAIMS FOR DEFECTS NOT APPARENT ON INSPECTION:
a) The Buyer shall have no claim for defects not apparent on inspection unless the Seller is notified of defective workmanship or materials within twelve months from delivery of the goods. Provided that the goods have been installed and applied in accordance with any relevant recommendations made by the Seller, the Seller will at its option replace the goods or refund the net invoiced price in respect of the goods which have been shown to be defective. If the Seller does so supply substitute goods the Buyer shall be bound to accept such substituted goods in full satisfaction of the obligations of the Seller under the contract.
b) The Buyer shall in any event have no claim or set-off in respect of defects unless a written complaint is sent to the Seller as soon as the defect is noticed and no use is made of the goods thereafter or alteration made thereto by the Buyer before the Seller is given an opportunity to inspect the goods.
c) The Buyer is responsible for ensuring that the goods are fit for any particular purpose, and no warranty or condition of fitness for any particular purpose is to be implied into the contract.
11. LIABILITY:

Save as stated in Conditions 9 and 10 (and save in respect of death or personal injury resulting from the negligence of the Seller its servants or agents) the Seller shall not be liable for any claim or claims for direct or indirect consequential or incidental injury loss or damage made by the Buyer against the Seller whether in contract or in tort (including negligence on the part of the Seller its servants or agents) arising out of or in connection with any defect in the goods or their fitness or otherwise for any particular purpose or any act omission neglect or default of the Seller its servants or agents in the performance of the contract.
12. FORCE MAJEURE:

Notwithstanding anything herein contained neither the Buyer nor the Seller is to be held liable for any delay or failure to carry out the contract due wholly or in part to an act of God action by any Government whether British or foreign civil war strikes and/or lockouts wheresoever occurring fire trade disputes floods or unfavourable weather or any material becoming unavailable or irreplaceable (whether at all or at commercially acceptable prices) or any other circumstances beyond the control of the Seller.
13. SUB-CONTRACTING:

The Seller reserves the right to sub-contract the fulfilment of any order or any part thereof.
14. INSOLVENCY AND BREACH OF CONTRACT:

In the event that:
a) the Buyer commits any breach of the contract and fails to remedy such breach (if capable of remedy) within a period of thirty days from receipt of a notice in writing from the Seller requesting such remedy; or
b) any distress or execution is levied upon any of the goods or property of the Buyer; or
c) the Buyer offers to make any arrangements with or for the benefit of its creditors or (if an individual) becomes subject to a petition for a bankruptcy order or (being a limited company) has a receiver appointed of the whole or any part of its undertaking property or assets; or
d) an order is made or a resolution is passed or analogous proceedings are taken for the winding up of the Buyer (save for the purpose of reconstruction or amalgamation with insolvency and previously approved in writing by the Seller) the Seller shall thereupon be entitled without prejudice to its other rights hereunder forthwith to suspend all further deliveries until the default has been made good or to determine the contract and any unfulfilled part thereof or at the Seller's option to make partial deliveries. Notwithstanding any such termination the Buyer shall pay to the Seller at the contract rate for all the goods delivered up to and including the date of termination.
15. INDUSTRIAL PROPERTY RIGHTS:

If goods supplied by the Seller to the Buyer's design or specifications infringe or are alleged to infringe any patent or registered design right or copyright the Buyer will indemnify the Seller against all damages, costs and expenses incurred by the Seller as a result of the infringement or allegation. The Buyer will give the Seller all possible help in meeting any infringement claim brought against the Seller.
16. BUYER'S ERROR IN ORDERING:

In the event the Buyer orders incorrectly the Seller will be under no obligation to the Buyer to rectify or assist in rectifying the error.
17. LAW AND JURISDICTION:

The contract shall be subject in all respects to English Law and to the jurisdiction of the English Courts.

Durapipe UK reserves the right to modify the details in this publication as products and specifications are updated and improved. The content of this publication is for general information only and it is the user's responsibility to determine the suitability of any product for the purpose intended.
For further information on all Durapipe UK products and services contact our Customer Services Department as detailed below.

Customer Services

Tel: 08448005509
Fax: 0800317875
Durapipe UK is a trade name of Glynwed Pipe Systems Ltd. Company Number 1698059.

Registered office:

Durapipe UK

Walsall Road
Norton Canes
Cannock
Staffordshire
WS11 9NS
United Kingdom
Tel: +44 (0)1543 279909
Fax: +44 (0)1543 279450
email: enquiries@durapipe.co.uk
web: www.durapipe.co.uk

Distributor

04900033 February 2015

[^0]: Chamfering and de-burring tools page 55

[^1]: Tolerance on angle $\pm 3^{\circ}$

[^2]: *Optional
 FPM seals available

